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Abstract

Characterized by a significant enlargement and weakening of the heart, dilated car-
diomyopathy (DCM) causes almost a third of heart failures in the Western countries. Since
treatment of DCM is complex due to a large variability of etiologies, clinicians require fast
and predictive, and therefore personalized computational tools to investigate and better
understand pathologies, plan respective therapies and predict their outcomes. However,
most recent modeling frameworks are either incomplete in their modeling capacity or un-
satisfactory for clinical routine in terms of their computational performance.

In this thesis, fast and robust patient-specific parameter estimation for a biomechanic
model of the human heart from clinical and imaging data is investigated. To that end,
this work is based on available models of heart anatomy and electrophysiology and firstly
presents an integrated framework to compute cardiac motion using a finite element setup.
In particular, an efficient strategy to parallelize the evaluation of stress and mechanical
boundary conditions was developed, allowing a high-performance implementation of the
Holzapfel-Ogden myocardium tissue model and more accurate cardiac motion during iso-
volumetric phases.

Secondly, this thesis introduces a novel, data-driven approach to calibrate electrophys-
iology (EP) parameters from clinically available 12-lead electrocardiograms (ECGs). Cou-
pling an existing GPU implementation of a mono-domain Lattice-Boltzmann model of car-
diac EP with a boundary element formulation of body surface potentials, we were able to
train a polynomial regression model on QRS duration and electrical axis of ECG simula-
tions and predict myocardium diffusion parameters. For the first time, this approach also
provides uncertainty estimates of the underlying data.

Using the proposed parallelization strategy, biomechanic model evaluation could be ac-
celerated on average by one order of magnitude. The ECG-based calibration of electro-
physiology models has been shown to significantly improve model accuracy compared to
nominal diffusivity and to outperform standard optimization techniques in terms of the
predictive power. Altogether, the presented framework may help clinicians to offer more
personalized treatment and eventually improve the outcome of medical interventions in
the future.
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1 Introduction

This thesis deals with the patient-specific parameter estimation of an electromechanic
model of the human heart from clinical and imaging data. The research has been per-
formed in the course of an internship at Siemens Corporation, Corporate Technology,
Imaging and Computer Vision, Princeton, NJ, USA, and in close collaboration with the
chair for Computer Aided Medical Procedures, Technische Universität München, Ger-
many.

This work first gives an overview to the topic and introduces the reader to the medical
background in chapter 1, before outlining the state of the art in chapter 2. The methodology
of this thesis is presented in chapter 3, and conducted experiments and their results are
illustrated in chapter 4 and discussed in chapter 5. The final chapter (6) concludes the
thesis and gives an outlook to future challenges.

1.1 Motivation

Dilated Cardiomyopathy (DCM) is defined as a disease of the myocardium in which the
heart becomes weakened and enlarged [30]. As a result, the heart is not able to pump
sufficient amounts of blood to the rest of the body, affecting organ systems such as the
lungs and the liver. The disease is known to be one of the most common causes of heart
failure and the leading indication of heart transplantation in younger adults [54].

Diagnosis and treatment turn out to be challenging due to a huge variety of individ-
ual causes and disease stages, including previous infarction and various toxic, metabolic
or infectious agents. Therefore, clinicians require computational tools to investigate and
better understand pathologies, plan respective therapies such as the implantation of artifi-
cial pacemakers or cardioverter-defibrillators, and predict their outcomes. In particular, a
high rate of non-responders [54] creates a clinical need to determine which therapy may be
beneficial for a given patient, and which prerequisites may trigger a successful outcome.

Most recent modeling frameworks suffer from either of the following, opposing limita-
tions: On the one hand, many frameworks offering adequate computational performance
are incomplete and hence not precise enough to describe patient-specific characteristics of
the disease with satisfactory detail. As the underlying cause of DCM often lies in the dark,
it is crucial to capture a broad range of biological phenomena with a sufficient level of de-
tail. On the other hand, fulfilling high modelling requirements often leads to an enormous
demand of computational resources. However, stressful clinical workflows and the need
for interactive tools for therapy planning form an upper bound in computational power
for clinical applicability.

1



1 Introduction

1.2 Problem Statement

To introduce patient-specific prediction of cardiac physiology into the clinical routine,
an integrated framework comprised by models of heart anatomy, electrophysiology and
biomechanics is required. For accurate physiological predictions of both heart electro-
physiology and mechanics, a personalization technique is needed. This thesis addresses
the integration of the models, presents a novel strategy for high-performance mechani-
cal stress evaluation, and introduces an estimation of patient-specific electrophysiological
parameters to drive the biomechanical model.

In particular, this work presents an integrated framework to estimate cardiac mechanics,
including strain and stress throughout the heart cycle. Based on an anatomical model that
incorporates a rule-based fiber and fiber sheet architecture, an electrophysiology model is
solved on static, end-diastolic geometry. The hereby computed myocyte activation times
finally trigger muscle contraction in a finite element-based biomechanical model.

To enable the personalization of biomechanical model parameters, it is necessary to eval-
uate the finite element framework frequently. Hence, the total computation time for a full
heart cycle should be as low as possible, allowing many iterations for sufficient person-
alization. We therefore propose an efficient strategy to parallelize the evaluation of stress
and mechanical boundary conditions, leading to a high-performance implementation of
the myocardium tissue model and more accurate cardiac motion during isovolumetric
phases. As such, the computation of one complete heart cycle can be achieved fast enough
to perform biomechanical model parameter optimization.

Regarding electrophysiology parameter estimation, a novel data-driven approach to cal-
ibrate parameters from clinically available 12-lead electrocardiograms (ECGs) is proposed.
In this work, an existing GPU implementation of a mono-domain Lattice-Boltzmann model
of cardiac EP is coupled with a boundary element formulation of body surface potentials.
Thereafter, a polynomial regression model is trained on features of simulated ECG signals
to predict myocardium diffusion parameters.

1.3 Medical Background

1.3.1 Cardiovascular System

The human cardiovascular system is the key life-sustaining organ system of the human
body. Its purpose is to supply cells throughout the body with oxygen and vital nutrients
and provide a means of waste product disposal. Breakdown of the cardiovascular system,
such as heart failure or rupture of main vessels, is a dangerous life-threatening condition,
which raises a great importance of medical diagnosis and treatment.

Characterized as a closed double-loop, the circulatory system is divided into two main
parts: the pulmonary circulation and the systemic circulation, as illustrated in fig. 1.1. Starting
in the right ventricle of the heart (1), oxygen-depleted blood enters the pulmonary circu-
lation via the pulmonary arteries (2) and is pumped into the lungs (3). After oxygenation,
the blood returns through the pulmonary veins (4) back to the heart, specifically into the
left atrium (4) and the left ventricle (5). There it enters the systemic circulation and is
ejected into the aorta (6), which forks into various arteries. In small capillaries in all parts
of the body the blood is eventually deoxygenated (7, 8). Finally, the venous system returns

2



1 Introduction

Figure 1.1: Schematic illustration of the cardiovascular system (see text for details). Image
from Anatomisty.com1.

the blood via the venae cavae (9, 10) back to the heart, this time into the right atrium (11)
and the right ventricle (1) [77].

1.3.2 Heart Anatomy

The heart is an organ of remarkable sophistication and a powerful muscle designed to per-
petually transport blood through the cardiovascular system. Evolution has optimized its
shape and function toward maximum pump effectivity and minimum muscular work. The
heart muscle itself, called myocardium, consists of striated muscle tissue and is protected by
thin endothelial layers on both sides: the endocardium inside the atria and ventricles, and
the epicardium outside. The heart is isolated from other organs by the pericardium, a non-
contracting fibrous sac. A thin liquid layer between pericardium and epicardium ensures
smooth and almost frictionless cardiac motion [77].

As illustrated in fig. 1.2, the interior of the heart is divided into a left and a right part.
These parts correspond to the two sections of the cardiovascular system: the right ventri-

1Anatomisty.com. Cardiovascular System.
http://anatomisty.com/anatomy-sistems/cardiovascular-system-2,
accessed on July 14, 2013
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1 Introduction

Figure 1.2: Structure of the normal heart. Image from [47].

cle pumps blood into the pulmonary circulation loop, the left ventricle into the systemic
circulation loop. Left and right cavities are separated by the septum, which belongs to the
left heart.

Each side consists of two chambers and two one-way valves out of connective tissue
that control the direction of blood flow during the cardiac cycle. Blood enters the heart
through veins (vena cava, pulmonary veins) and arrives in the atria. The atrioventricu-
lar valves, namely the tricuspid valve for the right heart and the mitral valve for the left
heart, ensure blow flow from the atria to the ventricles and not conversely. When the pres-
sure in the ventricles exceeds the pressure in the atria, the valves shut and remain closed.
Papillary muscles and the chordae tendineae ensure correct valve function and prevent a
valve prolapse. The semilunar valves in the arteries leaving the heart, namely the aortic
and the pulmonary valves, similarly ensure unidirectional blood flow and open as soon
as the pressure in the ventricles matches the pressure in the arteries. So-called regurgita-
tions, backward blood flow due to imperfectly sealed valves, can lead to severe cardiac
functional impairment.

Depending on the required muscle workload, myocardium thickness varies over the
heart. Since the atria do not need to contract significantly, atrial walls are relatively thin
(≈ 2mm). The free wall (i.e. the outside myocardium wall) of the right ventricle is slightly
thicker (≈ 5mm) because the right ventricle is responsible for pumping the blood through
the lungs. It is not surprising that the myocardium is thickest in the left ventricle (≈ 15mm)
due to the great cardiovascular resistance in the systemic circulation. A direct result of this
variation in thickness is a significantly different contrast in medical images. While the left
ventricle is usually well-defined in MR images, reliable detection of the right ventricle and
the atria might be challenging.

4
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1.3.3 Heart Physiology

Cardiac function is automatically and subconsciously controlled by the autonomous sympa-
thetic system. Contraction and relaxation of cardiac myocytes are triggered by an electrical
wave that propagates over the myocardium. Electrical activation and muscle contraction
form a system of tightly coupled and well-balanced biological phenomena. The follow-
ing sections describe how the electrical wave activates muscle fibers and which molecular
systems are responsible for the actual muscle contraction [20].

Electrophysiology

Throughout the myocardium, muscle cells are activated by an electrical stimulus that
causes them to depolarize and contract. A coordinated and synchronous global heart con-
traction requires precise timing of all involved muscle cells for most efficient pumping,
which is why the heart possesses a complicated electrical conduction system as shown in
fig. 1.3.

The electrical wave is originated at the sinus node, often also called sinoatrial node due
to its anatomical location. The sinus node serves as physiological pacemaker. Internodal
pathways pass through atrial tissue, which cause atrial myocytes to be depolarized, conse-
quently pumping blood into the ventricles. The electrical impulse is purposely delayed at
the atrioventricular (A-V) node for a couple of milliseconds, which allows the atria to fully
contract and pump as much blood into the ventricles as possible. Eventually, the electrical
wave is conducted downward toward the tip of the heart (apex) through the bundle branches
at very high speed (≈ 2000mm/s). The Purkinje fiber system finally distributes the electri-
cal impulse throughout the remaining myocardium, from endocardium to epicardium, at
a much lower speed (≈ 500mm/s) and causes ventricular myocytes to be depolarized and
contract.

Figure 1.3: Electrical conduction system of the heart. Image from Wikipedia2.

2Wikipedia. Electrical conduction system of the heart.
http://en.wikipedia.org/wiki/File:Electrical_conduction_system_of_the_heart.
svg, May 28, 2009
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The propagation of the electrical wave as well as the triggering of muscle contraction
is governed by molecular mechanisms based on sodium (Na+), potassium (K+), and cal-
cium (Ca2+) ion concentration differences on both sides of the cell membrane. As in other
(skeletal) muscles, Na+ ions flood into the cell through specific ion channels when the
cardiac myocyte is stimulated. The cell addresses the significantly increased transmem-
brane voltage by releasing K+ ions. However, voltage-gated calcium channels on the cell
membrane cause an influx of Ca2+ ions at the same time, which induces the release of
calcium from the sarcoplasmic reticulum, a muscle cell organelle responsible for storing and
providing Ca2+ ions upon excitation. This so-called calcium-induced calcium release (CICR)
phenomenon triggers muscle contraction. The temporary depolarization of the cell is re-
ferred to as action potential. During a short timespan called refractory period the cell cannot
be excited again and stays contracted. Afterwards, ion concentrations are re-balanced to
their initial state and the muscle returns to relaxation. The duration of the action poten-
tial (APD) is not constant over the myocardium, and its variation has an influence on the
synchrony of the cardiac motion [20].

Figure 1.4: Left: Patient connected to the 10 electrodes necessary for a 12-lead ECG.
Right: Representation of normal ECG (lead II). Images from Wikipedia3.

For more than a century, electrocardiography has been utilized to non-invasively ana-
lyze cardiac electrophysiology. Today, electrocardiograms (ECG) are an important diag-
nostic tool in clinical routine. As illustrated in fig. 1.4 (left panel), 10 electrodes placed
on patient torso and extremities are necessary for the commonly used 12-lead ECG. Al-
though ECG measurements are summation signals integrating the action potentials of all
myocytes throughout the myocardium, the combination of the various leads provides a
spatial perspective and allows a quite detailed diagnosis such as the detection of bun-

3Wikipedia. Electrocardiography.
http://en.wikipedia.org/wiki/Electrocardiography, August 2, 2013
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dle branch blocks or severe arrhythmia. Nevertheless, local variations and impairments
of cardiac conductivity require different approaches, e.g. invasive endocardial mappings
obtained through catheter.

Figure 1.4 (right panel) schematically shows the well-defined ECG signal of healthy sub-
jects. The following patterns, which correspond to specific cardiac events, can regularly be
observed [20].

• P wave: Initial atrial depolarization triggered by the sinus node

• PR segment: Conduction delay at the atrioventricular nodes

• QRS complex: Rapid depolarization of right and left ventricles

• ST segment: Isoelectric phase during which ventricles remain depolarized

• T wave: Repolarization of the ventricles

The leads of a standard 12-lead ECG can be divided into bipolar limb leads, augmented
limb leads and precordial leads, only the first of which being bipolar. Fig. 1.5 shows an
ECG scan printed on graph reference paper with a common scaling (1mV is represented as
1cm on the ordinate, and 1s as 25mm on the abscissa). The characteristics of the different
leads are as follows.

Figure 1.5: 12-lead ECG of a patient with normal sinus rhythm. Image from Wikipedia4.

• Bipolar limb leads I , II , III : The three basic leads are computed from the extremity
electrodes on left arm (LA), right arm (RA), and left leg (LL):
I = LA−RA
II = LL−RA
III = LL− LA
After ECG pioneer Willem Einthoven, these leads are also called Einthoven leads.

4Wikipedia. 12-lead ECG.
http://en.wikipedia.org/wiki/File:12leadECG.jpg, November 24, 2008
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• Augmented limb leads aV R, aV L, aV G: The augmented leads are derived from the
same electrodes as the Einthoven leads but allow a view at the heart from different
angles:
aV R = RA− 1

2 (LA+ LL)
aV L = LA− 1

2 (RA+ LL)
aV F = LL− 1

2 (RA+ LA)
Since the negative pole is constructed using a combination of other electrodes, the
augmented leads are considered unipolar. After their inventor Emanuel Goldberger,
these leads are also called Goldberger leads.

• Precordial leads V1-V6: Finally, the remaining leads are computed by directly relating
the six chest electrodes with Wilson’s central terminal: VW = 1

3 (RA+ LA+ LL)
Therefore, the precordial leads are also unipolar leads. After their inventor Frank
Norman Wilson, these leads are also called Wilson leads.

Together with the actual ECG signals, modern detectors automatically perform signal
processing and calculate several parameters. Especially important are the heart rate (in
the example of fig. 1.5: 62bpm), the duration of the QRS complex (112ms) and the electrical
axis during the QRS complex (88◦). The heart beat needs to be taken into account when
assessing the T wave, because, contrary to the QRS complex, the T wave becomes shorter
as the heart beat increases. While the QRS duration can provide a hint on the overall
electrical conduction velocity in the ventricles, the electrical axis allows an estimation of
the average direction of wave propagation. While the electrical axis can be computed
for other parts of the ECG signal as well, the term electrical axis denotes the axis during the
QRS complex throughout this thesis. QRS durations between 60 and 100ms are considered
normal, higher values may indicate bundle branch blocks. For the electrical axis, angles
between −30◦ and 90◦ are normal, angles below −30◦ indicate a left axis deviation, angles
above 90◦ a right axis deviation.

Since the propagation of the electrical wave controls cardiac contraction, efficient car-
diac function is crucially dependent on globally balanced electrophysiology. Local alter-
ations such as reduced electrical conductivity, for instance after a myocardial infarct, can
endanger cardiac synchrony. Many sudden deaths are due to local impairments of cardiac
electrophysiology [2].

Biomechanics

Cardiac (and skeletal) myocytes, also known as muscle fibers, are of tubular shape, and
each contain chains of myofibrils. The rod-like muscle units are themselves organized as a
chain of sarcomeres, each delimited by two so-called Z-discs. Between the Z-discs, cylin-
drical bundles of two types of interleaved protein filaments are stacked. Thick filaments
of myosin (15nm in diameter) and thin filaments of actin (7nm in diameter) slide into each
other and cause muscle fiber contraction [77].

The physiological details of cardiac contraction are described in the sliding filament
model, proposed in 1954 [93]. On both sides of a sarcomere, actin filaments are directly
connected to the Z-discs as shown in fig. 1.6. In between, myosin filaments are only in-
directly connected to the Z-discs by titin, a thin protein. The essential feature of myosin
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proteins are the myosin heads, which are tighly connected to the myosin filament, but can
also bind to the actin. This way, the myosin acts like an active ratchet and paddles along
actin filaments by repeatedly binding, ratcheting and letting go. Triggered by inflow of cal-
cium ions (Ca+2), myosin heads are enabled and shorten the sarcomeres by progressively
sliding outward, toward the Z-discs. As a result, the space between Z-discs and myosin
filaments (I-band) shortens, and the space between opposing actin filaments (H-zone) dis-
appears. A release of calcium deactivates the myosin heads, causing unbinding from the
actin and relaxation to the rest state [47].

Apart from the molecular processes of biomechanics, also the macroscopic arrangement
of myocardial fibers within the myocardium has a significant influence on cardiac contrac-
tion [86, 95].

Figure 1.6: Sarcomeres are composed of actin and myosin filaments that slide into each
other for muscle contraction. Image from Wikipedia5.

1.3.4 Dilated Cardiomyopathy

Dilated cardiomyopathy (DCM) is a cardiovascular disease in which the heart becomes
weakened and enlarged, which leads to an ineffective pump function that can directly and
indirectly affect the lungs, liver, and other organ systems [2]. The condition is the most
common form of cardiomyopathy. It is known to be one of the most common causes of
heart failure and the leading indication of heart transplantation in younger adults [54].

5Wikipedia. Sarcomere.
http://en.wikipedia.org/wiki/File:Sarcomere.svg, January 10, 2010
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Etiology

Very often, no direct cause of DCM is apparent. The disease might be the result of damage
to the myocardium due to previous impairment caused by myocardial infarction or due
to a variety of toxic, metabolic, or infectious agents. Other possible causes include the
abuse of alcohol, pregnancy and chronic uncontrolled tachycardia. Genetic disposition is
assumed in approximately 20 per cent [2].

Epidemiology

In the US, the incidence of DCM is 148 cases per 100,000 persons per year, and the es-
timated prevalence is 920 cases per 100,000 persons. It can occur at any age, including
during childhood. The risk of sudden death due to DCM is greatest in patients under 30.
Dilated cardiomyopathy occurs more frequently in male patients than in female patients
(roughly 3:1) [23].

Diagnosis

The following factors indicate dilated cardiomyopathy:

• General, atrial, ventricular enlargement of the heart

• Sinus tachycardia, atrial fibrillation, ventricular arrhythmias

• Reduced ejection fraction

• Intraventricular conduction defects

• Orthopnea (shortness of breath when lying flat) or cyanosis at rest

• Pleural effusion due to pulmonary venous hypertension

Electrocardiograms are capable of detecting many of the above factors. From an imag-
ing perspective, chest X-rays, and cardiac magnetic resonance imaging (MRI) are predom-
inantly used. To exclude ischemic heart diseases, catheterization examinations and coro-
nary angiography are often employed. As genetic factors for DCM are more and more
understood, genetic testing has been utilized to understand the underlying causes of the
disease.

Treatment

Since the underlying causes of DCM very often lie in the dark, treatment is based on the
relief of symptoms. Standard drug therapies may include salt and alcohol restriction, ACE
inhibitors (lowering blood pressure), diuretics (increasing the excretion of water from the
body), digitalis (increasing the contraction force) and anticoagulants (preventing clotting
of blood).

Depending on the diagnoses impairment of cardiac electrophysiology, patients may re-
ceive artificial pacemakers to cope with intraventricular conduction delays. Implantable
cardioverter-defibrillators are useful for patients with pronounced risk of arrhythmia. In
many cases, heart transplantation remains the ultimate option [2].
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1.4 Technical Background

1.4.1 Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) or magnetic resonance tomography (MRT) is a medi-
cal imaging technique used in radiology in a wide range of medical applications. In con-
trast to other imaging modalities such as traditional X-ray, computed tomography (CT), or
positron emission tomography (PET), ionizing radiation is not required to visualize inter-
nal structures or processes of the body. Offering an excellent image quality both in terms
of contrast and resolution, it is commonly used today in clinical routine for diagnostic and
also interventional purposes.

MRI is based on the the property of nuclear magnetic resonance of atomic nuclei in the
body. This physical phenomenon can be observed when atomic nuclei with an uneven
number of spins (e.g. 1H , 13C) are brought into a static magnetic field. In MRI machines,
the nucleus under investigation is 1H (proton) because biological tissue is mainly com-
posed of water molecules. The static magnetic field will cause the protons’ average mag-
netic moment to be aligned with the direction of the field. Instead of perfect alignment,
the individual spins will precess around the field direction with the so-called Larmor fre-
quency. If an external radio frequency (RF) pulse that exactly matches the Larmor fre-
quency is applied, it will be absorbed by the nuclei and their spin will flip. Usually, two
different pulses are used: 90◦-pulses will flip the net polarization vector sideways, and
180◦-pulses will flip the orientation completely (from parallel to anti-parallel or the other
way round). After the pulse, the spins will relax back to their original configuration, emit-
ting an RF signal termed free induction decay in an arbitrary direction that can be measured
by receiver coils.

The loss of signal during this relaxation is not desired but can be used to alter the con-
trast of the image. T1 relaxation refers to the recovery of longitudinal magnetization and
occurs exponentially with a time constant T1, which is around one second in soft tissue. T2

relaxation is the loss of phase coherence in the transverse plane and is associated with the
number of nuclei in phase. Due to local magnetic inhomogeneities and spin-spin interac-
tions, the relaxation time T2 is of the order of a few tens of milliseconds in soft tissue. The
fact that different tissues have different T1 and T2 times is used to create image contrast: By
changing the basic parameters of image acquisition repetition time (TR, time between con-
secutive pulse sequences) and echo time (TE , time between RF pulse excitation and signal
reading), T1-weighted MRI scans (both TR and TE short), T2-weighted MRI scans (both TR
and TE long) or proton density MRI scans (TR long, TE short) can be obtained.

For encoding spatial locations in the patient under examination, three mutually ortho-
gonal gradient fields are used. The first gradient is usually applied in superior-inferior
direction and varies the Lamar frequency. As a result, the excitation pulse only causes the
spins to flip within a transverse (axial) slice of the body. The second gradient (phase encod-
ing gradient) is applied after the spins are flipped for a short time, resulting in a shift of the
spins’ phases. Finally, during read-out, the third gradient (frequency encoding gradient)
is applied such that the water molecules emit RF signals with spatially varying frequency.
The measured signals are line-wise collected in spatial frequency domain termed k-space,
the 2D Fourier transform of the image to be reconstructed. Inverse 2D Fourier transforma-
tion is eventually employed to obtain the actual medical image.
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Figure 1.7: Diastolic (left) and systolic (right) short-axis slices of a cine MRI scan obtained
from a dilated cardiomyopathy patient.

Cine MRI sequences are 4D scans (3D + time) either acquired in real-time or by using
gating. The former technique is only possible with low image quality and temporal reso-
lution. The latter assumes periodicity, acquires data over several periods and reconstructs
the final image by splicing data obtained at during different periods but at the same rel-
ative time within the period. In cardiac magnetic resonance imaging, ECGs serve as per-
fect gating signal and allow the acquisition of images with sufficient spatial and temporal
resolution. Figure 1.7 shows two slices of a cine MRI sequence obtained from a dilated
cardiomyopathy patient.

1.4.2 Finite Element Method

The Finite Element Method (FEM) allows the simulation of various physical phenomena
within discretized objects over an also discretized temporal domain. The field of appli-
cation includes numerical simulations in continuum mechanics, fluid dynamics and ther-
modynamics. FEM has been established as standard approach for the solution of a wide
range of computational problems.

FEM is suited to solve both static and dynamic partial differential equations (PDEs).
Using basis functions with finite spatial support, the PDE can be transformed into a system
of equations to be solved. In the case of dynamic equations, time integration techniques
such as Euler or Runge-Kutta are employed for computation, which are, however, not
unique to FEM but can also be applied to alternative methods.

Discretization of Space

Finite elements, from which the name of the method is derived, discretize the spatial do-
main of the problem. In its simplest form, mesh-based FEM relies on a mesh of triangles
(2D) or tetrahedrons (3D), but also other polygonal cells such as hexahedrons (cubes) can
be used. However, tetrahedrons are often preferred to hexahedrons because they can more
easily be adopted to complicated boundaries and allow a simple generation of volumetric
meshes.
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Discretization of Time

Mechanical FEM simulation frameworks often solve a second order differential equation
of the form:

Mü + Cu̇ + Ku = F (1.1)

where u is the vector gathering all mesh vertex displacements. M is the mass matrix, C the
damping matrix, and K the stiffness matrix containing the internal elastic forces at each
vertex. Finally, the vector F contains external forces. Summation is used to obtain the
global vectors and matrices from the contributions of each element. The dynamics equa-
tion can be approximated using an Euler scheme, and the resulting sparse system of linear
equations Ξu = F may be solved iteratively using the conjugated gradient algorithm.

1.4.3 General-purpose Computing on Graphics Processing Units

Graphics Processing Units (GPUs) were originally built to allow the fast computation of
images in a frame buffer intended for output to a display. Modern computer graphics
rendering is very intensive in terms of the number of polygons and pixels to be processed
in a short time. Therefore, GPU architectures are designed for a highly parallel execution
of code and a high data throughput. As illustrated in fig. 1.8, GPUs contain a multitude of
Arithmetic Logic Units (ALU), which can perform computations simultaneously.

Figure 1.8: Schematic comparison of CPU and GPU architectures. Image from NVIDIA6.

However, the design of GPU architectures only addresses problems that can be ex-
pressed as data-parallel computations. Unlike multiple CPU cores, GPU frameworks re-
quire the same program to be executed on many datasets. The prohibition of running
different code at the same time comes with unique advantages: Because exactly the same
hardware-level instructions are executed in all cores (GPU processing elements), sophis-
ticated flow control is as unnecessary as big data caches, because memory access latency
can be hidden with arithmetically demanding calculations.

Inspired by the tremendous computational advances of modern GPU cards, the scien-
tific community has discovered the potential of general-purpose computing on graphics
hardware in recent years. By exploiting their massively parallel architecture, demanding

6NVIDIA Programming Guide for CUDA.
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html, July 19, 2013
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computations can potentially be speed up by several orders of magnitude, depending on
the complexity of the algorithm and its implementation.

Nevertheless, a couple of basic principles have to be followed for optimal execution of
code on the GPU:

• GPU processing elements, also known as cores or stream processors, are organized in
groups (multiprocessors). Each core can execute a sequential thread but all cores of
a particular multiprocessor execute in a so-called SIMT (Single Instruction, Multiple
Thread) fashion, i.e. that all cores execute the same instruction at the same time.
Therefore, forks such as conditional execution branches should be avoided. The two
code blocks of an if statement, for instance, will be executed sequentially; first the
true block for all cores in which the if condition evaluated true, and then the false
block for the remaining cores.

• As for graphics rendering, single-precision floating point operations were tradition-
ally sufficient, double-precision instructions are either not supported at all or come
at the cost of bandwidth. Today, the peak double-precision throughput is usually
1/2 of the single-precision throughput. Hence, calculations should be performed in
single-precision, if applicable.

• Regarding memory management, each core has a limited number of very fast reg-
isters, and all cores in a multiprocessor share a small software-managed data cache
commonly termed shared memory. With a low latency and high bandwidth, this
indexable memory runs essentially at register speeds. Shared memory is also the
only possibility to allow communication between cores of the same multiprocessor.
Parallel implementations often make extensive use of shared memory for optimal
execution patterns.

• Without a cache memory hierarchy, instructions in threads issuing a device memory
operation may take hundreds of clock cycles due to the long memory latency. Thus,
device memory access should be avoided as much as possible. Alignment of memory
access (thread 1 reads memory block 1, thread 2 reads memory block 2, etc.) can be
resolved faster than random memory access (thread 1 reads block 7, thread 2 reads
block 53, etc.) Writing operations to device memory may be cached and are only
guaranteed to be reflected until the end of the current program execution. As a result,
device memory can not be used as a means of inter-thread communication.

• A program that exploits GPU hardware will regularly 1) copy data from host mem-
ory (regular RAM) to device memory (GPU card), 2) execute a function, a so-called
kernel, in parallel threads on the GPU, and 3) copy resulting data back from the de-
vice to host memory, where it can be further processed.

Vendors of GPU hardware such as NVIDIA or ATI provide computing frameworks to
facilitate general purpose GPU programming. In this work, the CUDA (Compute Unified
Device Architecture) platform is employed for parallel calculation on graphics hardware.
It allows developers to use C/C++ as high-level programming language and offers useful
abstractions of hardware specifics as a minimal set of language extensions.
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The heart is one of the most complex organs of the human body, and its proper functioning
is the result of tightly coupled biological systems acting in concert. Due to this outstand-
ing complexity, different aspects of cardiac anatomy and physiology have to be modeled
independently. For each aspect, different approaches of varying modeling capacity and
computational performance have been proposed. This section gives overview of prior art,
focusing on model parametrization and personalization.

2.1 Cardiac Anatomy

Representing the patient-specific anatomy and morphology based on medical images is
necessary as a first step toward a complete model of the heart. Apart from the delineation
of anatomical structures, it is important to capture the organization of myocytes in fibers
and fiber sheets. Since a cardiac anatomy model is usually generated only once for a given
patient, computational performance and efficiency is often considered less important than
for other components of heart models such as electrophysiology or biomechanics.

2.1.1 Image Segmentation, Detection, Motion Tracking

As outlined in the review of Kang et al. [38], numerous techniques to segment multi-
ple heart chambers from different imaging modalities have been developed. The authors
identified four categories of segmentation algorithms: (1) boundary-driven techniques, (2)
region-based techniques, (3) graph-based techniques, and (4) model fitting techniques.

The concept of boundary-driven approaches is to deform an initial, estimated contour to
the heart boundaries observed in the image. Internal (contour smoothness) and external
(image features) energy functionals guide the evolution of the detected boundary in an
iterative setup. Popular strategies include active contours [39], commonly referred to as
snakes, and its more recent adaptations. More recent work includes coupling locally affine
registration with an adaption of free-form deformations [102]. The main limitations of
theses approaches are the sensitivity to noise and the dependency of the initial contour.

Region-based techniques rely on the partitioning of the entire image domain in regions
of interest and background. Clustering [10] and level-set-based approaches [66] may yield
global heart segmentation but usually lack chamber-specific detection and are also sensi-
tive to initialization, noise, and image intensity inhomogeneities.

Graph-cut [13] algorithms interpret images as an intensity-weighted graph. Source and
sink nodes, which are connected to all image nodes, form a virtual flow through the graph.
The optimal segmentation is found as the minimal cost cut separating the image into two
different regions. Random walk [28], another graph-based approach, analytically deter-
mines the probability that a random walker starting at an unlabeled pixel will first reach
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a prelabeled one (seed point). Both techniques, especially the latter one, have successfully
been applied to cardiac image segmentation. However, the requirement of seed points
may limit full automation.

The last group of algorithms attempts to match a previously defined model of geomet-
ric shape to the input image. Implemented as a two-step procedure, the approach first
requires a shape model to be constructed from a training set, before matching to a new,
unseen image can be performed. Originally expressed as principal component analysis
(PCA) on inter-point distance, active shape models (ASM) [17, 57] use key landmark points
to generate a statistical description of shape variation. Fitting a model to new points re-
sults in minimizing the sum of squared distances between corresponding model and image
points in an iterative approach. The biggest advantages of model-fitting strategies are the
ability to robustly perform automatic segmentation without manual initialization and the
possibility to incorporate very complex geometries such as the human heart with its var-
ious chambers, valves and surrounding structures. However, demanding computational
performance of the original approach confines modeling capacity.

Recent work has tackled this limitation and developed comprehensive statistical mod-
els of the human myocardium. Zheng et al. proposed the marginal space learning (MSL)
algorithm for fully automatic segmentation from cardiac computed tomography (CT) [99]
or magnetic resonance imaging (MRI) [101] volumes. Instead of exhaustively searching
the original parameter space, only low-dimensional marginal spaces are searched, sig-
nificantly improving detection speed. Refinements to accurately detect left heart valve
structures [37] facilitate further automatic processing as physiological landmarks allow
semantic associations to the underlying anatomy. Probabilistic boosting trees (PBT) as in-
troduced by [91] have been applied to train discriminative classifiers in datasets with large
intra-class variability [79].

Atlas-based segmentation algorithms are related to shape model approaches. An atlas
is defined as a segmented reference image constructed from one or multiple (manually)
annotated datasets. Using non-linear image registration, the reference segmentations is
transferred to the new image [45]. Recent advancements include incorporating multiple
atlases of different imaging modalities such as computed tomography angiography (CTA)
[42, 103].

Once an end-diastolic image is successfully segmented, continuous detection (ideally
with point correspondences) in 3D+time datasets such as cine MRI images is often re-
quired. Motion manifold learning [96] is a state-of-the-art method for estimating temporal
components. The approach can be used to obtain heart structure segmentation throughout
the cardiac cycle.

2.1.2 Cardiac Fiber and Sheet Architecture

Not only for cardiac contraction but also for the propagation of the electrical wave, my-
ocardial fibers play a crucial rule. First, the myocardium tissue has orthotropic mechanical
properties defined by the orientation of fibers and their arrangement in fiber sheets. And
second, fiber orientation influences the electrical conductivity since the activation wave
propagates faster along the fiber direction.

Diffusion tensor imaging (DTI) has been widely used to study the distribution of fiber
directions across the myocardium on ex vivo human and animal heart preparations [71, 86].
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Incorporating fiber architecture into a patient-specific model would ideally rely on in vivo
measurements, which are not yet clinically available [95]. However, recent progress has
lead to in vivo acquisitions of fiber orientation with limited resolution, and approaches us-
ing an unscented Kalman filter [60] or exploiting properties of Maurer-Cartan connection
forms [69] have been proposed to reconstruct fiber orientations from sparse measurements.

One alternative is the creation of fiber orientation atlases from dog [68, 70] or human
hearts [44]. While being based on actual measurements, validation studies regarding the
compatibility with pathological variations are still pending. The other option are rule-
based methods. General patterns of fiber alignment are derived from ex vivo studies (as
cited above), and translated into a mathematical formulation [7, 58]. Hereby, the fiber
elevation and the fiber sheet transverse orientation are fixed on the endocardia and the
epicardium and accordingly interpolated throughout the myocardium. The advantage of
rule-based approaches over atlases is their parametrization ability, which allows patient-
specific adaption to pathologies.

2.2 Cardiac Electrophysiology

Governing muscle contraction, cardiac electrophysiology is an important part of a com-
plete heart model. Being a time-dependent process, electrophysiology needs to be com-
puted over at least one, in many cases multiple full heart cycles. Hence, runtime per-
formance needs to be considered. In addition, model personalization is crucial to obtain
patient-specific simulation results.

2.2.1 Model Selection

A plethora of models with different biological scales and theoretical complexity has been
proposed since the early works of Hodgkin and Huxley [32] in 1952. Following the classi-
fication of Clayton and Panfilov [16], the various models can be divided into three groups:
Biophysical, phenomenological and Eikonal models.

Biophysical approaches tackle modeling of cardiac electrophysiology directly at cell
level and try to simulate the biological phenomena that are responsible for the myocytic
depolarization and repolarization events. In particular, ionic interactions within the cell
and across the cell membrane (ion channels) are considered [46, 64, 65]. Since cell func-
tions are complex, more then 50 parameters related to various interactions are required to
provide a sufficient degree of detail. The recently proposed model by Ten Tusscher [89]
is based on experimental data on most of the major ionic currents and has been shown to
reproduce different electrophysiological behaviors such as action potential restitution and
conduction velocity. Due to the huge amount of parameters and their often abstract nature
(i.e. not mensurable), personalizing biophysical models is challenging.

Embedding the cell model into tissue (and ultimately organ) scale is achieved using
semi-linear reaction-diffusion partial differential equations (PDE). Regarding the way the
interstitium is modeled, two different strategies have been studied: While mono-domain
approaches neglect interstitial effects and consider the myocardiam as single excitable tis-
sue [19], bi-domain approaches superimpose intra- and extra-cellular domains, both of
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which existing throughout the entire myocardium, and take different electrical properties
into account [12]. The latter kind of models is naturally more computationally demanding
than the former approaches but better suited when phenomena between cells and intersti-
tium or entirely within the interstitium are investigated.

Working on a more macroscopic level, phenomenological models are simplifications of
biophysical models and were historically the first models to be proposed [24]. They are
derived from experimental observations and describe the action potential with a small
number of parameters that influence its shape directly, disregarding the underlying ionic
interactions. The Mitchell-Schaeffer model [56], for instance, simplifies ion channel inter-
actions to only two currents (an inward and an outward one), and its governing equations
only depend on five parameters. As a result, phenomenological models are a reasonable
compromise between physical modeling capacity and computational performance when
integrated to organ level. In terms of personalization, both the small number of parameters
and their direct influence on mensurable output (action potential shape, ECG) facilitates
patient-specific simulations.

Similar to biophysical models, phenomenological models are also embedded to organ
scale utilizing PDEs in mono-domain [22, 56] or bi-domain [16] frameworks. Recent nu-
merical solutions enable near real-time computation of mono-domain approaches [87]. Es-
pecially employing a Lattice-Boltzmann formulation has skyrocketed the computational
performance with tremendous speed gains [27, 74].

Eikonal models neglect the simulation of action potentials entirely and reduce muscle
activation solely to the propagation of the electrical wave. Therefore, they are a further
simplification of the models mentioned above. Mathematically, Eikonal relate a given spa-
tial location in the myocardium with the time of wave arrival [25, 40]. Governed by only
one or two parameters, full-heart simulations can be computed very efficiently using fast
marching methods [84] and are therefore suited for real-time applications [82]. While it
has become possible to simulate wave reentry phenomena with Eikonal models [67], many
other pathological conditions such as arrhythmias, fibrillations or tachycardia are believed
– in contrast to biophysical or phenomenological models – to be out of reach.

2.2.2 Parameter Personalization

Finding patient-specific electrophysiology parameter combinations is difficult in clinical
applications. Current approaches rely on invasive endocardial mapping [75] or body sur-
face mapping (BSM) [21, 92] and employ inverse problem methods to estimate electrical
diffusivity or action potential duration. These methods are in general computationally de-
manding because hundreds of forward model runs are necessary. In addition, the lack of
availability of these diagnostic modalities in clinical routine imposes a limitation: Invasive
measurements are often avoided, whereas BSM is still not widely available.
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2.3 Cardiac Biomechanics

Two different aspects of biomechanics, which are linked together according to the Hill-
Maxwell framework [26], have to be considered: The passive constitutive law describes
the elastic behavior of the non-linear, anisotropic visco-elastic myocardium tissue and the
resulting internal forces. The active component models the muscle contraction controlled
by electrophysiology and is usually incorporated as transient external forces [34]. Simi-
lar to electrophysiology, the time-dependent process of cardiac biomechanics raises major
challenges regarding computational performance for clinical application.

2.3.1 Passive Myocardium Properties

Covering different degrees of complexity, a large variety of models has been proposed to
simulate the passive properties of myocardium tissue. In general, improved model accu-
racy comes with an increasing number of parameters and elevated computational com-
plexity.

Well suited for real-time applications, mass-spring systems have been applied for biomed-
ical simulations [59]. Since they cannot, however, incorporate physical material properties
such as Young modulus or Poisson ration, physically realistic simulations traditionally rely
on finite element methods (FEM).

A basic simplification is to assume a linear relationship between strain and stress, lead-
ing to transverse isotropic linear elasticity [83]. The law is traditionally implemented
within the infinitesimal, linear strain theory for computational efficiency, which becomes
inaccurate for large deformations. In addition, usually only anisotropy along the fiber
direction is considered, leaving the effect of fiber sheets to be neglected.

Based to mechanical ex vivo experiments stretching slabs of myocardium tissue in dif-
ferent directions and measuring tissue strain under known load, several non-linear con-
stitutive laws have been derived. A transverse isotropic strain energy density function
called Guccione law was proposed in [29]. Today, the most commonly used models are the
Pole-Zero law [36] and the Costa law [18], both of which include the effects of myocardial
fiber sheets and thus better capture myocardium thickening during systole. In a quantita-
tive comparison [78], the author discovered that the Costa law tended to outperform other
models in terms of prediction accuracy with respect to ex vivo experiments but could not
reach a consensus in the scientific community. Extensively used in mechanical engineer-
ing to simulate rubber-like materials, Mooney-Rivlin models have also been adapted to
biomedical settings with satisfying results [14, 51]. Finally, the recently proposed Holzapfel-
Ogden constitutive law [33] is based on considerations of the myocardial tissue structure
rather than fitting exponential functions to stress-strain experiential data.

2.3.2 Active Myocyte Contraction

Similar to electrophysiology models, the literature distinguishes three categories of active
contraction models: Biophysical, phenomenological and lumped models.

Biophysical models are based on experimental ex vivo studies [62, 90] and simulate
the molecular processes leading to cardiac motion, including ion interactions and actin-
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myosin bindings. The Hunter model [35] and its more recent extension [63] are commonly
used for organ level simulations and require calcium concentrations to be computed di-
rectly by the chosen electrophysiology model. The standard model for single cell sim-
ulations is the Rice model [76], which captures the majority of the cellular mechanisms
involved in myofilament function. The model has two disadvantages: First, it requires
more then 40 ordinary differential equations (ODEs) to be integrated in each time step.
And second, the huge number of parameters (44) imposes a challenge in personalization
from clinical data. Nevertheless, organ level integration might be less computationally de-
manding than expected because sarcomere force dynamics can surprisingly be described
on a linear manifold despite the model’s non-linear equations [49].

Phenomenological approaches try to allow multi-scale integration by mathematically
bridging the gap between the organ level and biological mechanisms at cell level. By sim-
plifying (sub-)cellular mechanisms, a small set of parameters (usually 4-5) and a well ad-
ministrable number of equations is imposed. The model proposed in [81], which is based
on [8], assumes direct relationship between the action potential and the active contraction
with the rates of ATP binding and release. The few clinically-related parameters and its
computational efficiency encourage clinical application, and preliminary validation stud-
ies reported promising predictions [80].

Capturing the essential molecular pathways, the multi-scale model recently proposed in
[14], an extension of [8], takes energy exchange during the heart beat into account, linking
blood flow and myocardium biomechanics. It showed superior results in [80] and can be
used without calcium concentrations being computed by the electrophysiology model.

Neglecting spatial variability, lumped models as analytical descriptions of fiber contrac-
tion do not require meshes to be solved. Instead, they focus on one single myocyte and can
be solved very efficiently [4]. However, regional abnormalities of the myocardium such as
scars or localized fibrosis cannot be captured.

2.3.3 Efficient FEM Implementation

Originally proposed to improve the accuracy of infinitesimal strain implementations, co-
rotational approaches compute deformations in a local coordinate system that rotates with
the elements [61], and have been successfully applied to heart simulations [50]. Alterna-
tively, the formulation of Total Lagrangian Explicit Dynamics (TLED) [55] allows suffi-
cient deformation, is also compatible with non-linear tissue models, but requires tiny time
steps for numerical stability, especially for stiff materials. Exploiting the massively paral-
lel architecture of Graphics Processing Units (GPU), non-linear TLED solvers have shown
significant speed-ups of up to 17x for surgical simulations [88].

Implicit integration schemes [5] are numerically more stable and generously allow larger
time steps. However, total Lagrangian formulations of the method require complex deriva-
tive expressions and matrix inversions for each time step. The underlying idea of the
Multiplicative Jacobian Energy Decomposition (MJED) algorithm [52] is to decompose the
strain energy function in such a way that matrix inversions can be avoided. Forces and
stiffness matrices are computed directly by deriving the energy with respect to the nodal
position.
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3.1 Overview

Figure 3.1 shows the four components of the complete heart model. A patient-specific
anatomical model constitutes the modeling basis, is derived from imaging data and in-
corporates structural information regarding the arrangement of myocytes in muscle fibers
and sheets. Cardiac electrophysiology models compute the depolarization and repolar-
ization of muscle cells as the electrical wave propagates through the myocardium. In the
biomechanics component, an orthotropic material law models the passive properties of
myocardium tissue. An active contraction model integrates muscle forces into the frame-
work by relating electrophysiological activation with a simplified description of actine /
myosine interactions. Finally, lumped models of cardiac hemodynamics and other con-
straints are employed to compute biomechanical boundary conditions.

Anatomy Electrophysiology

Biomechanics Boundary Conditions

Myocardium 
fibers and
fiber sheets

Image Segmentation

Volume mesh
Action potential cell model

Electrical conduction 
(His, Purkinje)

Wave propagation

Actine/myosine
interactions

Orthotropic passive tissue model

Four cardiac phases

Atrial and arterial pressure

Isovolumetric constraints

Surrounding structures, spatial position constraints

Figure 3.1: Overview of four components of modeling framework. Images partly from
[47, 53] modified.

This chapter illustrates the proposed modeling framework in detail and explains how
the various components are personalized or calibrated. In section 3.2, the pipeline of
anatomical model generation is outlined. The resulting anatomical model is intrinsically
personalized since the pipeline is based on medical imaging data. Section 3.3 does not
only describe the electrophysiology model employed for heart simulations, but also ex-
plains the proposed calibration procedure in detail. Eventually, section 3.4 presents the
finite element framework utilized to perform simulations, including active and passive
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myocardium stress models and boundary conditions. The section emphasizes on the pro-
posed strategy to efficiently parallelize the evaluation of these models, facilitating the es-
timation of biomechanical model parameters by significantly reducing the time required
for full heart cycle simulations.

3.2 Cardiac Anatomy Modeling Pipeline

Figure 3.2 shows the entire pipeline of cardiac anatomy model generation. Since this work
mainly focuses on the electrophysiology and biomechanics parts, the anatomy modeling
pipeline is only outlined because providing full insight on the used statistical tools would
exceed the scope of this thesis.

First, the patient-specific heart morphology is automatically estimated from magnetic
resonance images (MRI) using a database-guided machine-learning framework. A mean-
shape model of the heart is registered to the image by automatically detecting its global
position, orientation and scale using Probabilistic Boosting Tree and Marginal Space Learn-
ing [101]. An active shape model is then applied to refine the borders of the heart in the
images [100]. The segmentation process is fully automatic but under expert guidance to
allow manual adjustments when necessary.

Image segmentation Volume mesh creation Mesh tagging Fiber computation

Left ventricle

Right Ventricle

Figure 3.2: Different steps of our automatic pipeline for the estimation of patient-specific
anatomical models [98].

The detection algorithm results in three triangulations with point correspondences: left
ventricle endocardium, right ventricle endocardium and epicardium, which are then fused to
form a closed surface of the biventricular myocardium. Next, a tetrahedral volume is com-
puted using CGAL1, which is an open-source software library of geometric data structures
and algorithms. The facets are tagged with the labels left ventricle endocardium, right ven-
tricle endocardium, epicardium, left ventricle septum and right ventricle septum automatically
according to the point-to-mesh distance between the volume mesh and the detected trian-
gulations.

Finally, a generic model of myocardium fiber architecture that includes fiber and fiber
sheets is computed. Unfortunately, diffusion tensor imaging (DTI) is not yet clinically
available [95]. Hence, we follow a rule-based strategy [7], which we extend to cover the
entire ventricle from apex to valves. As illustrated in fig. 3.3 (A), below the basal plane
(identified automatically using the point correspondences of the initial triangulations), the
fiber elevation angle α, i.e. their angle with respect to the short axis plane, varies linearly

1Computational Geometry Algorithms Library, http://www.cgal.org
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across the myocardium, from -70◦ on the epicardium to +70◦ on the endocardium. Sim-
ilarly, the sheet direction, which is defined by the angle β with respect to the outward
transmural axis, varies transmurally from +45◦ on the epicardium to -45◦ on the endo-
cardium. Angles α are computed for each point of the volume mesh between the apex and
basal plane based on the geodesic distance to the endocardia and epicardia identified by
the facet tags:

α =
depi αendo + dendo αepi

dendo + depi
(3.1)

depi, dendo, αepi and αendo are the distances and angles at the endocardium and epicardium
respectively. Angles β are computed in a likewise fashion.

Figure 3.3: A: Definition of fiber directions f and sheet directions s in terms of angles α and
β (e0 circumferential axis, e1 longitudinal axis, e2 transmural axis). B: Fiber and
sheet model computed on a patient-specific anatomy [98].

We then fix the fiber and sheet orientations around each valve (fibers are longitudinal
around the aortic valve, tangential elsewhere [58], sheet normals are oriented toward the
barycenter of the valves) and interpolate the local orthonormal basis from the basal plane
to the valve, first by following the myocardium surface, then throughout the myocardium
thickness.

For orthonormality preservation, the interpolation is performed using the Log-Euclidean
framework [3]. First, the matrix logarithm of each vertex’ fiber and sheet basis Bi is com-
puted, which is trivial since there is no need to diagonalize bases:

Li = BiWBᵀ
i , with the tensor weighting W = log

�
0.9 0 0
0 0.5 0
0 0 0.1

�
(3.2)

Second, the barycentric interpolation is performed in log space:

L =
1

4

X
i

Li (3.3)

At last, the interpolated orthonormal basis is obtained by diagonalization of exp(L) such
that the eigenvector of greatest magnitude corresponds to the fiber direction, the eigenvec-
tor of second greatest magnitude corresponds to the fiber sheet direction, and the eigen-
vector with smallest magnitude corresponds to the transversal direction. Figure 3.3 (B)
shows the generated fiber and sheet directions.
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3.3 Cardiac Electrophysiology

3.3.1 Myocardium Transmembrane Potentials

Cardiac electrophysiology is solved using the Mitchell-Schaeffer model [56], a phenomeno-
logical mono-domain model that describes the transmembrane potential v(t) in the inter-
val of [−70mV, 30mV ] throughout the myocardium with the following equation:

∂v

∂t
= Jin + Jout + Jstim + c∇ ·D∇v (3.4)

Hereby, c is the diffusion coefficient along the myocardial fiber, and D = ρI + (1− ρ)ffᵀ

the anisotropic diffusion tensor along the fiber direction f with anisotropy ratio ρ. The
model simplifies all ion channel interactions to only two currents. Jin denotes an inward
gated current, capturing the fast acting ionic currents in the myocyte. The gating variable
h(t) models the state of the ion channels and is defined dependent on the change-over
voltage vgate. Accounting for transmembrane voltage decrease, Jout is an ungated outward
current. In addition, Jstim refers to a transient stimulus current which is added to mimic
electrical pacing. The four parameters τin � τout � τopen, τclose are directly related to the
shape and duration of the action potential, as illustrated in fig. 3.4.

Jin =
h(t)v2(1− v)

τin
, with

dh

dt
=

8<: 1−h
τopen

, if v < vgate
−h
τclose

, otherwise
(3.5)

Jout =
−v
τout

(3.6)

Figure 3.4: Action potential of the Mitchell-Schaeffer model. (1) After the stimulus, the
voltage rises quickly with a time constant of τin. (2) The gate closes, inward
and outward currents remain balanced on a time scale of order τclose. (3) The
voltage drops as the outward current dominates on a time scale of order τout.
(4) The gate slowly reopens, the recovery constant is τopen [56].
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The given partial differential equation (PDE) is solved using the LBM-EP algorithm [74].
LBM is short for Lattice-Boltzmann method and was originally developed from cellular au-
tomata models of fluid flows. It provides very high scalability on modern computing
architectures due to local computations and offers second-order accuracy in space.

The algorithm operates on a Cartesian grid and employs a 7-connectivity topology (6
connections plus the central position) and Neumann boundary conditions. For each of
the seven connections i ∈ [1, 7], the function fi(x, t) represents the probability of finding a
particle travelling along the respective edge ei of node x. Its computation is decomposed
into two consecutive steps, namely the collision phase, yielding intermediate post-collision
states f∗i and the streaming phase, propagating the distribution functions along their corre-
sponding edges:

f∗i = fi −Aij (fj − ωjv) + δt ωi(Jin + Jout + Jstim), (3.7)
fi(x + ei, t+ δt) = f∗i (x, t) (3.8)

The matrix A = (Aij) denotes the collision matrix that relaxes the distribution function fi
toward the local value of the potential v. The reader is referred to [74] for the derivation of
matrix A such that anisotropic fiber-related diffusion is taken into account. The weighting
factors ωi depend on lattice connectivity and emphasize the center position. Since the
gating variable h(t) is expressed as ordinary differential equation, it is easily updated at
every node using a forward Euler scheme. Finally, the transmembrane potential v(x, t) is
expressed as:

v(x, t) =
X
i

fi(x, t) (3.9)

Inherently being node-wise, the strictly local collision rule can be implemented very
efficiently on a GPU architecture. The anatomical model at end-diastasis is represented
as a level set, simplifying the processing of complex geometries including the respective
boundary conditions. As shown in fig. 3.5, five domains are considered: Left and right
ventricular septum, used to pace the heart to mimic the His bundle; left and right endo-
cardia with fast electrical diffusivity, cLV and cRV , to mimic the Purkinje network, and the
remaining myocardium tissue with diffusivity cMyo. The resulting transmembrane poten-
tials are mapped back from the Cartesian domain to the tetrahedral volume mesh using
tri-linear interpolation.

Solving cardiac electrophysiology serves two different purposes: On the one hand, the
computed transmembrane action potentials are directly used in the biomechanical model
to trigger muscle contraction, as described further down in section 3.4. On the other hand,
the calculation of the action potential distribution on the heart surface is the first step
toward ECG calculation and our data-driven model calibration as explained subsequently.

3.3.2 Boundary Element Model of Torso Potentials

Since the Mitchell-Schaeffer model is a mono-domain model, it only provides transmem-
brane action potentials. However, for a projection to the torso, extracellular potentials at
the epicardium are required. To estimated them, the elliptic formulation proposed in [15]
is used, which assumes a constant diffusion anisotropy ratio λ = ci(x)/ce(x), with ci and
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LV/RV septum (pacing)

Fast LV
endocardium (cLV)Fast RV 

endocardium (cRV)

Myocardium
(cMyo)

Figure 3.5: Myocardial domains considered in EP simulation [97].

ce denoting the intra- and extracellular diffusion coefficients respectively. This approach
has been shown to preserve the essential ECG features well [11, 15]. Within the entire
myocardium domain Ω, the extracellular potential φe is expressed as:

φe(x, t) =
λ

1 + λ

1

|Ω|

Z
Ω

(v(y, t)− v(x, t))dy (3.10)

A boundary element method (BEM) [6, 85] is employed to map φe from the epicardium
surface mesh (a subset of the tetrahedral volume mesh) to the torso, which is also dis-
cretized as a triangular mesh. Following Green’s second identity, the potential φ(x) at any
point x of the thoracic domain is given as

φ(x) =
1

4π

Z
SB

φB
r · n
||r||3

dSB −
1

4π

Z
SH

�
φe

r · n
||r||3

+
∇φe · n
||r||

�
dSH (3.11)

where subscripts B denote the body surface and the potentials thereupon, SH the epi-
cardial heart surface, and n the surface normal unit vector facing outward of the domain
under consideration (i.e. outward at the torso and inward at the epicardium). The vector r
is defined by x and the integration point. Note that equation 3.11 assumes that∇φB = 0.

By positioning an observer point on each of these surfaces as illustrated in fig. 3.6 (a) for
the heart surface, separate equations for the two locations can be written:

−φiB +
1

4π

Z
SB

φB dΩi
BB −

1

4π

Z
SH

φe dΩi
BH −

1

4π

Z
SH

∇φe · n
||ri||

dSH = 0 (3.12)

1

4π

Z
SB

φB dΩi
HB − φie −

1

4π

Z
SH

φe dΩi
HH −

1

4π

Z
SH

∇φe · n
||ri||

dSH = 0 (3.13)

Using the same subscripts as above to specify heart and torso surfaces, equations 3.12
and 3.13 were simplified by introducing the notion of solid angle dΩi

ef , i.e. the solid angle
subtended by surface element dSf at the i-th location of surface e:

dΩi
ef =

ri · n
||ri||3

dSf (3.14)
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Torso Surface

Heart

Observation Point i

Integration Point j

r

Torso Surface

Heart

Observation Point i

Integration Triangle k

dΩ

Observation Point i

dΩ

Integration Triangle k

Distant Region 
integration triangles

Close Region
integration
triangles

a b

Figure 3.6: a) Schematic of torso and heart surfaces showing observation and integration
points. b) After discretization, the surface is represented by triangles spanning
solid angles dΩ. See text for details.

Thus, the first subscript in all solid angle notations defines the surface where the ob-
server is placed, and the second subscript the surface of integration. Special care has to be
taken if both surfaces are identical (dΩHH and dΩBB), because this will raise the situation
that the observation point is one of vertices of the integration triangle.

After discretization and reformulation in matrix form, the following linear system can
constructed:

PBB φB + PBH φe + GBH ΓH = 0 (3.15)
PHB φB + PHH φe + GHH ΓH = 0 (3.16)

Hereby, the matrix ΓH contains the gradients ∇φe and cancels out when the system is
solved. The coefficients of matrices P and G entirely depend on the geometry, and by
defining a completely precomputable transfer matrix

ZBH =
�
PBB −GBHG−1

HHPHB
�−1 �

GBHG−1
HHPHH − PBH

�
(3.17)

the potentials on the body are given by φB = ZBH φe [6]. Computing the matrix ZBH hence
requires two matrix inversions, for which the Eigen library2 was used.

To obtain the geometric coefficients of matrices P and G, the integrals are calculated in
a vertex-to-triangle fashion as shown in fig. 3.6 (b). For instance, the coefficient PHBij is
obtained by first placing the observer at the i-th vertex of the heart surface. Then, all the
triangles k ∈ Cj are iterated, where Cj is the close region of j, i.e. the set of all triangles
directly around the j-th vertex of the body surface:

PHBij =
1

3

X
k∈Cj

dΩik (3.18)

Computing the coefficients of matrices P is straightforward because there is a closed-
form formula available for solid angles in tetrahedra. The surface over distance integrals of
matrices G are more challenging; Gaussian quadrature of order 6 was a good compromise
between precision and runtime performance.

2Eigen C++ library for linear algebra, http://eigen.tuxfamily.org
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3.3.3 Electrocardiogram Calculation

From the potentials φB at the torso, the standard Einthoven, Goldberger and Wilson leads
(as described in section 1.3.3) are computed. For the subsequent calibration of diffusion
coefficients, two features of the ECG signals instead of the entire ECG traces are utilized:
The duration of the QRS complex ∆QRS intuitively signifies the total time the electrical
wave requires to propagate throughout the entire myocardium, and the mean electrical
axis angle α allows the detection of imbalances between left and right ventricular wave
conduction. Because these two features are automatically derived by ECG devices in clini-
cal routine and printed on ECG recordings, calibration using the trained regression model
is simple and does not require digitized ECG traces. From the computed ECG signals,
∆QRS and α are derived automatically following the algorithm outlined in [43]:

1. Denoting the various limb lead signals as y(t), filtered signals yf (t) are computed by
squaring the respective derivatives:

yf (t) =

�
d

dt
y(t)

�2

(3.19)

2. Next, yf (t) is convolved with a sliding average kernel of window size 24ms for in-
creased robustness:

yc(t) = yf (t) ?
�

1

N
[1 1 . . . 1 1]

�
(3.20)

3. A threshold value τ = 0.8mV 2ms−2 has proven to be sufficient for detecting the
QRS complex and its duration ∆QRS for a given, single heart cycle,

yt(t) =

(
1, if yc(t) ≥ τ
0, otherwise

(3.21)

∆QRS =
1

fS

X
yt(t) (3.22)

where fS is the sampling frequency.

4. Finally, the electrical axis is calculated based on the leads I and II:

α = arctan
2hII − hI√

3hI
(3.23)

Hereby, the hi’s are the sum of R and S peak amplitudes in the respective leads.

3.3.4 Data-Driven Diffusion Calibration

The forward EP and ECG model as described above, i.e. computing ECG signals and
parameters from a specific model of anatomy and EP, can be seen as a dynamic system
y = f(θ). In this thesis, the free parameters of f are the diffusion parameters, and the
system’s outputs are the ECG parameters:�

∆QRS

α

�
= f

�
cMyo

cLV
cRV

�
(3.24)
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Model calibration thus consists of evaluating a function g(y) that approximates the inverse
problem θ = g(y) ≈ f−1(y). Figure 3.7 schematically illustrates inputs and outputs of our
regression model.

1 © 2013 Siemens Corporate Technology Unrestricted

Regression Model

 = g(y)

QRS



cMyo

cLV

cRV

ECG Parameters y Myocardium Diffusion Parameters θ

Figure 3.7: Schematic illustration of the data-driven regression model.

Normalization of ∆QRS and α is necessary because of significant variation within the
population, even in healthy subjects, due to heart morphology, position, and other fac-
tors not directly related to myocardium diffusivity. Therefore, we run three forward EP
simulations for each patient with the diffusivity parameters listed in table 3.1.

Configuration F1 includes nominal EP diffusion parameters and thus entails a normal
wave propagation. Intuitively encoding the overall heart size (provided same diffusivity,
the electrical wave will take longer to propagate through the entire myocardium in larger
hearts), we use ∆QRSF1

to normalize the QRS duration ∆QRS :

∆QRS =

 
∆QRS

∆QRSF1

!
(3.25)

The others two configurations contain low LV diffusivity (LBBB-like scenario, F2) and
low RV diffusivity (RBBB-like scenario, F3). Simulations with F2 and F3 scope the entire
space of α of one particular patient, which allows, intuitively, to decide whether a specific
electrical axis α expresses a left or right axis deviation. Normalization is performed as
follows:

α =

�
α− αF2

αF3 − αF2

�
(3.26)

As a result, a set of normalized parameters (∆QRS , α) intrinsically considers patient
geometry features.

Configuration cMyo (mm2/s) cLV (mm2/s) cRV (mm2/s)
F1 6,000 16,000 16,000
F2 1,000 1,200 16,000
F3 1,000 16,000 1,200

Table 3.1: Forward simulation diffusion configurations. See text for details.

Finally, the model θ = g(∆QRS , α) is learned using the multivariate polynomial regres-
sion method [31]. Degree seven offered a good compromise between prediction accuracy
and generalization, as no significant differences in performance with degrees varying from
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4 to 9 could be distinguished. One regression function is learned for each diffusivity pa-
rameter independently, g = (gMyo, gLV , gRV ). Multivariate regression splines (MARS) and
gradient boosting [31] were also investigated, yielding very similar results.

After training of g, the diffusivity parameters are estimated using measured and nor-
malized ECG features: �

ˆcMyo

ˆcLV
ˆcRV

�
=

264gMyo

gLV
gRV

375�∆QRS

α

�
(3.27)

3.4 Cardiac Biomechanics and Hemodynamics

3.4.1 Finite Element Framework

Cardiac biomechanics and hemodynamics are computed using the finite-element method
(FEM) on linear tetrahedra meshes. In the central dynamics equation,

Mü + Cu̇ + Ku = Fa + Fp + Fb (3.28)

ü, u̇ and u gather the accelerations, velocities and displacements of the mesh nodes. M
is the mass matrix, K the internal elastic stiffness matrix and C the (Rayleigh) damping
matrix. The force vectors Fa, Fp and Fb model active stress (cardiac contraction), ventric-
ular blood pressure and mechanical boundary conditions, respectively, and are described
in detail in the following sections.

The dynamics equation can be approximated using an implicit Euler scheme [5], allow-
ing larger time steps and higher numerical stability than explicit schemes. In this thesis, a
time step of 1ms was used. The resulting linear system Ξu = F is solved using the con-
jugate gradient method. In general, all components of the dynamics equation (3.28) are
embedded in the SOFA framework3.

3.4.2 Passive Stress

In this work, quantities of the biomechanic model are formulated in a total Lagrangian
framework [55], where all variables are referred to the original configuration of the sys-
tem. This allows the precomputation of variables and parallel execution of nearly all cal-
culations.

The basic deformation variable for the description of the local kinematics in linear tetra-
hedra meshes is the deformation gradient F. Using tetrahedron shape vectors Di as the
cross product of two opposing edges respectively [52], the deformation gradient is written
as

F =
4X
i=0

xi Di (3.29)

3Simulation Open Framework Architecture [1], http://www.sofa-framework.org
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where vectors xi denote the current nodal positions in each time step. Associated with F
are (1) the Jacobian determinant J = det(F), which quantifies the volume variation and
can be expressed as closed form formula solely depending on the vertex positions [52],
(2) the right Cauchy-Green deformation tensor C = FᵀF, and (3) the left Cauchy-Green
deformation tensor B = FFᵀ.

The passive tissue properties are modeled using the orthotropic Holzapfel-Ogden (HO)
model [33], which uses the following invariants of the right Cauchy-Green deformation
tensor C (unit vectors a and b are preferred material directions):

I1 = trC I4 = a · (C a) I8 = a · (C b) = b · (C a) (3.30)

While I1 is a principal invariant, I4 and I8 introduce anisotropy in different directions,
and a coupling between them. In the HO model, the fiber direction f and the fiber sheet
direction s are used as a and b (invariants I4f , I4s and I8fs).

The strain-stress energy function of the HO model consists of five parts and writes:

Ψ =
a

2b
exp [b(I1 − 3)]

+Hδ(I4f − 1)
af
2bf

¦
exp

�
bf (I4f − 1)2

�
− 1

©
+Hδ(I4s − 1)

as
2bs

¦
exp

�
bs(I4s − 1)2

�
− 1

©
+

afs
2bfs

�
exp(bfsI

2
8fs)− 1

�
+D1(J − 1)2

(3.31)

The ak’s and bk’s are material constants. a and b correspond to the first, isotropic term, sub-
scripts f to the anisotropic term in fiber direction, subscripts s to the anisotropic term in
fiber sheet direction, and subscripts fs to the anisotropic term in transverse sheet direction.
All a parameters have the dimension of stress, whereas all b parameters are dimensionless.
Hδ(·) is the logistic function, a smooth approximation of the Heaviside step function em-
ployed here for increased numerical stability. Finally, D1 is a parameter equivalent to the
bulk modulus.

To improve computation efficiency, the strain-stress energy function is expressed accord-
ing to the Multiplicative Jacobian Energy Decomposition (MJED) formulation [52]:

Ψ =
X
k

fk(J)gk(Ĩ) (3.32)

The idea is to decompose the energy function such that gk is independent of J and only
depends on the invariants Ĩ = [I1, I4f , I4s, I8fs]. Thus, its derivative will not involve any
costly matrix inversions. Eventually, the nodal forces Fi and the edge stiffness matrices
Kij (xi and xj are two connected nodes) are defined as follows:

Fi = − ∂Ψ

∂xi
Kij =

∂2Ψ

∂xi∂xj
(3.33)
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Following these definitions, the derivation of Ψ consists of first computing ∂fk(J)/∂xi,
for which closed form expressions that do not involve calculating C−1 are available [52].
Second, deriving gk(Ĩ) requires calculating their first and second derivative with respect
to C, which can be easily calculated through the identities given above (eqq. 3.30).

3.4.3 Active Stress

The active contraction forces Fa of the dynamics equation 3.28 couple the electrophysiol-
ogy model with the biomechanic model. In this work, the computation of cardiac EP is
performed beforehand on end-diastasis geometry. From the EP simulation, two param-
eters are obtained for each vertex of the tetrahedral mesh: The depolarization time Td,
defined as the point in time when the transmembrane action potential exceeds the change-
over voltage vgate, and the repolarization time Tr, defined as the point in time when the
potential drops back below vgate.

Expressing the active Cauchy stress tensor σc in terms of the action potential, the model
proposed in [81] is then used to integrate myocardial contractility into the framework. The
model is based on the following ODE (σ̇c is the time derivative of σc):

σ̇c + σc = uσ0 (3.34)

Hereby, u ∈ [0; 1] is the normalized action potential, and σ0 the maximum contraction
stress that can be reached by a cell. To avoid time stepping, u is replaced by the values
0 and 1 for depolarization and repolarization, which allows to write σc in closed form.
During depolarization (Td ≤ t ≤ Tr), the stress tensor writes:

σc(t) = σ0

�
1− ekATP (Td−t)

�
(3.35)

During repolarization (Tr < t < Td + heart period), the stress tensor is defined as:

σc(t) = σc(Tr) e
kRS(Tr−t) = σ0

�
1− ekATP (Td−Tr)

�
ekRS(Tr−t) (3.36)

The rates, which control the contraction stress increase and decrease, are the ATP binding
rate kATP and the release rate kRS . Together with σ0, they form the main parameters of
the model and be defined globally (in this work kATP and kRS) or locally for each mesh
node (in this work σ0, to allow stronger LV contraction and suppress contraction of the
connective tissue close to the valves).

Finally, the contraction stress needs to be integrated over the tetrahedral elements and
expressed as force vector [81]:

Fa =
Z
V
div (σcf ⊗ f) dV =

Z
S

(σcf ⊗ f) n dS (3.37)

In this equation, f denotes the fiber direction, ⊗ the tensor product and the term σc f ⊗ f
the 3D contraction stress tensor. The force is equivalent to a pressure applied along the
fiber orientation, and is computed for each triangle of each tetrahedron using the surface
normal vectors n.
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3.4.4 Mechanical Boundary Conditions

Two mechanical boundary conditions are considered:

Fb = Fspr + Fperi (3.38)

First, the effect of arteries and atria on ventricular motion is modeled by connecting the
valve plane vertices to springs [81] with anisotropic stiffness K such that radial motion is
permitted. Valve plane vertices are automatically defined as endocardium border vertices.
The fixed extremity of the springs corresponds to the rest position of the nodes x0, taken
at diastasis when the heart is still at rest. The contributions of the springs are gathered into
the force vector Fspr:

Fspr(x) = K (x− x0) (3.39)

The anisotropic stiffness K is obtained by

K = [el er ec]

�
kl 0 0
0 kr 0
0 0 kc

�
[el er ec]

−1 (3.40)

where [el er ec] is the transformation matrix from the global coordinate system to the coor-
dinate system defined by the long axis el and the short axis plane (er, ec) as illustrated in
fig. 3.8 (left panel). Parameters kl, kr, and kc define the spring stiffness in the respective
directions.

Figure 3.8: Mechanical boundary conditions. Left panel: Springs attached to the valve
plane vertices model the effect of arteries and atria on the ventricles. Image
from [47], modified. Right panel: Distance map used to compute the peri-
cardium force. Red regions are outside of the pericardial bag and form a re-
stricted zone for endocardial nodes.

Second, the heart motion is also constrained inside the pericardium bag and by the
neighboring lungs and liver. These interactions are modeled using the contact-based peri-
cardium constraint proposed in [47]. Let δΩ be the pericardium, defined by the epicardium
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at end-diastole. A distance map DδΩ, as shown in fig. 3.8 (right panel), is computed from
Ω, with DδΩ < 0 inside the pericardial bag. We then add to the epicardial nodes the force

Fperi(x) =

8>>>><>>>>:
k

(DδΩ(x)− dout)2

(DδΩ(x)− dout)2 +m2
∇DδΩ(x), if DδΩ(x) > dout

−k (DδΩ(x)− din)2

(DδΩ(x)− din)2 +m2
∇DδΩ(x), if DδΩ(x) < din

0, otherwise

(3.41)

The parameters dout and din (dilation parameters of the pericardium bag), k (contact force
amplitude) and m (contact force rate) control where the force starts to apply, its maximum
strength and how fast it is reached. If the displacement of an epicardial node exceeds dout,
a force to push it back perpendicularly is induced, creating a restricted zone outside the
pericardial bag. The impact of inward radial displacement is controlled by din, reducing
the motion of the epicardium compared to the one of the endocardium. As the gradient of
the distance map ∇DδΩ defines the magnitude of the force, friction-free sliding between
myocardium and pericardium is ensured.

3.4.5 Hemodynamics

For a complete model of heart biomechanics, consideration of blood hemodynamics is
essential. As the ventricular blood exerts its pressure on the myocardial walls, cardiac
contraction antagonizes the remote pressure in pulmonary and systemic circulation, and
the damping in aorta and arteries. The valves enforce unidirectional blood flow, and their
opening and closing governs the transition between the four cardiac phases illustrated in
figure 3.9.

Figure 3.9: Overview of the four cardiac phases. Image from [47].

In this work, ventricular pressure p is added to the dynamics system (eq. 3.28) using the
nodal forces

Fp = pN (3.42)

As pressure is defined as force per area, exerted perpendicularly, the vector N needs to
gather both surface areas and normals. Let Te be the triangulated endocardial surface, the
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notion t ∈ Te adj i signifies all surface triangles t that are adjacent to vertex i.

Ni =
1

3

X
t∈Te adj i

�
nt

Z
t
dS
�

(3.43)

The computation of pressure p is dependent on the current cardiac phase. The following
sections will describe the utilized models for each phase respectively. As the simulation
passes through the different phases, the models and their boundary conditions are applied
in an alternating fashion.

Atrium Model

During filling, blood enters the ventricles through the atrioventricular valves and the ven-
tricular blood flow q, defined as the derivative of the chamber volume Q = d/dt V , is
positive. Accordingly, the ventricular pressure is equal to the atrial pressure. Modeling
atrial contraction may be computationally demanding, and this work focuses on ventricu-
lar contraction. Therefore, a simplified phenomonological model of atrial blood pressure
as proposed in [41] is used. Neglecting pulmonic and systemic circulations, the model de-
couples the atria from the arteries. The following, lumped time-varying elastance model
describes the atrial pressure pA:

pA = E (VA − VA,rest) (3.44)
E = (Emax − Emin)γa + Emin (3.45)

VA,rest = (1− γa)(Vrd − Vrs) + Vrs (3.46)

γa =

(
−12 cos(2πtatrium/ttwitch) + 0.5, if tatrium < ttwitch

0, if tatrium ≥ ttwitch
(3.47)

tatrium =

(
mod (t− tactive + ∆tPR, tcycle), if t ≥ tatrium −∆tPR

0, if t < tatrium −∆tPR
(3.48)

In these equations, minimum elastance Emin, maximum elastance Emax, diastolic volume
at zero pressure Vrd, and systolic volume at zero pressure Vrs are free parameters of the
model. γa is an activation function, where ttwitch is the duration of the ventricular contrac-
tion. tactive is the activation time of ventricular contraction, ∆tPR the duration of the PR
interval, and tcycle the duration of the heart cycle.

Finally, the atrial volume VA is defined by the following ODE:

d

dt
VA = Qvein −Qvalve (3.49)

where Qvalve is the flow through the atrioventricular valve (equal to the variation in ven-
tricular volume), and Qvein the incoming flow through the pulmonary vein or the venae
cavae:

Qvein =
pvein − pA
Rvein

(3.50)

Hereby, pvein is the pressure in the vein (assumed constant), and Rvein the resistance of
the vein. The equations are solved using a first-order Euler implicit scheme for numerical
stability. Two independent models are used for the left and for the right atrium.
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Arterial Model

During ejection, which is initiated when the ventricular pressure p reaches the arterial
pressure, blood leaves the ventricles through the semilunar valves into the aorta and the
pulmonary artery. Accordingly, the ventricular pressure is equal to the arterial pressure.
In this work, a 3-element Windkessel model [94] is used to model arterial pressure. The
model is based on electrical circuit analogies as shown in fig. 3.10, where the blood flow
resembles electrical current, and pressure electrical voltage.

Rc

RpC

Qar
par

pr

Figure 3.10: Circuit analogy of the 3-element Windkessel model.

The peripheral resistance Rp accounts for the distal resistance of the circulatory system,
mainly due to small vessels and capillaries. The compliance C models the elasticity of
the arterial walls. Finally, the characteristic resistance Rc incorporates the influence of the
blood mass and the compliance of the artery proximal to the valves.

The following ODE defines the arterial pressure par:

d

dt
par(t) = Rc

d

dt
Qar(t) +

�
1 +

Rc
Rp

�
Qar(t)

C
− par(t)− pr

RpC
(3.51)

The arterial flow Qar is hereby defined as the opposite of the ventricular flow Qar = −Q,
and the parameter pr refers to the constant low pressure of reference, typically the pressure
of the remote venous system. Again, this equation is integrated using a first-order Euler
implicit scheme, and two independent models are used for aorta and pulmonary artery.

Isovolumetric Constraint

Between filling and ejection, both valves are closed. The myocardium contracts but due
to the incompressibility of blood, the volume in the ventricle remains constant. The effect
of muscle activity in this so-called isovolumetric phase is hence an increase of ventricular
blood pressure. Similarly, between ejection and the next filling phase, the myocardium
relaxes to reduce the blood pressure while maintaining the ventricular volume.

To keep the ventricular volume V constant during these phases, we propose an efficient
projection-prediction isovolumetric constraint, which we enable during these phases. The
idea is to find a pressure p̃(t) that ensures V (t + dt) = V0, where dt is the time step. Our
method consists of three steps:

1. We solve the dynamic system (eq. 3.28) without constraint and compute uncon-
strained new vertex positions x̂(t+ dt).
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2. The system is reformulated including an unknown corrective pressure λ(t):

Ξu(t+ dt) = Ξ(x(t+ dt)− x0) = F + λN (3.52)

Solving the system at t+ dt yields:

(x(t+ dt)− x0) = (x̂(t+ dt)− x0) + λΞ−1N (3.53)

The constrained system thus writes:(
x(t+ dt) = x̂(t+ dt) + λ(t)Ξ−1N

V (t+ dt) = V0

(3.54)

As shown in [73], the Lagrangian coefficient λ is computed by solving a third-order
polynomial. The vertices are then projected by applying displacements up(t) =
λ(t)Ξ−1N.

3. Finally, the corrected pressure at the current time step is computed:

p̃(t) = p(t) + λ(t) (3.55)

By utilizing a second-order Taylor expansion scheme, the pressure at the next time
step is predicted:

p(t+ dt) = p̃(t) + dt
dp̃

dt
+

1

2
dt2

d2p̃

dt2
(3.56)

=
3

2
[p(t) + λ(t)]− 2p̃(t− dt) +

1

2
p̃(t− 2dt) (3.57)

In contrast to the method proposed in [9], which solves the dynamics system three times,
our algorithm only requires the system to be solved twice: To compute intermediate vertex
positions x̂(t+ dt) and to compute the directions of the corrective displacements Ξ−1N.

3.4.6 Fast GPU Implementation

As the biomechanical submodels of our framework are the computationally most demand-
ing ones, we focus our efforts on the the parallelization of these components. We use
NVIDIA CUDA4, version 5.5, as our development environment.

Solving the dynamics system of the biomechanics components involves the computation
of nodal forces by accumulating the contributions of all elements sharing each node. Blood
pressure forces, for instance, are first calculated per endocardial triangle, and subsequently
accumulated and expressed per vertex. Table 3.2 gives an overview of computations that
are not entirely vertex-wise and thus require accumulation of contributions.

Straightforward CPU implementations can avoid the accumulation by directly distribut-
ing the contributions. For the example of blood pressure forces mentioned above, this
would translate into the following algorithm:

4Compute Unified Device Architecture, http://developer.nvidia.com/cuda-toolkit
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1. Initialize nodal pressure force vectors fi with 0.

2. Loop over all endocardial triangles, compute pressure force F using the triangle nor-
mal, and directly add it to the three involved vertices: fi ← fi + F/3.

Unfortunately, the architecture of GPU devices does not allow such calculation schemes.
Global random access accumulations are prohibited to avoid the racing condition that may
emerge when different kernel threads write at the same shared memory. Instead, we pro-
pose an adaptation of the parallel implementation strategy proposed in [88] to efficiently
solve the various components of our simulation framework.

Component Quantity Computed per Contributions accumulated over
Passive Stress Force Vertex Adjacent tetrahedra

Edge Stiffness Edge Adjacent tetrahedra
Force derivative Vertex Adjacent edges

Active Stress Force Vertex Adjacent tetrahedra
Blood Pressure Force Vertex Adjacent triangles

Table 3.2: Overview of computations that require accumulation of contributions. The com-
putation of edge stiffnesses and force derivatives is due to the implicit Euler in-
tegration scheme used in the SOFA framework [5].

The key element of our method is the precomputed integer look-up table, mapElements,
which is stored in a texture map for increased efficiency. Let Vmax be the maximum valence
of the mesh (maximum number of elements connected to a node), and Nn the number of
nodes. mapElements is a table of size 2×Nn×Vmax that stores for any given node i the pairs
(j, k), where j is the index of each adjacent element and k is the local index of that node in
that element (e.g., k ∈ [1, 4] if the element is a tetrahedron). Remaining positions, which
occur when the node is shared by less than V elements, are initialized with a negative
value (figure 3.11).

We then implement two kernels. First, a kernel compute is invoked across the Ne ele-
ments to perform the element-wise computation. It stores the element-wise contributions
into separate floating point textures T k of size Ne each. There are as many textures T k

as nodes shared by each element, for instance three for triangles and four for tetrahedra.
Next, a kernel accumulate is invoked across Nn threads to accumulate element contribu-
tions to each node. This is achieved by looping over all Vmax pairs (j, k) corresponding
to the respective node and accumulating the element-wise contributions stored at the j-th
positions of textures T k. Figure 3.11 illustrates the texture mapElements and, for exemplary
reasons, the first two textures T k.

In contrast to [88], indexing of our look-up texture mapElement only requires the maxi-
mum valence, and not the actual nodal valence (which is not constant). We thus need to
manage only one texture instead of two, resulting in simpler code but also in additional
speed-up through texture alignment with the accumulate kernel threads. The higher mem-
ory demand, as shown in table 3.3, is negligible in the light of current GPU memory sizes.

The outlined method is employed to efficiently parallelize all computations listed in
table 3.2. Other mechanical boundary conditions, such as the pericardium constraint, are
formulated node-wise and therefore straightforward to implement in CUDA.
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Figure 3.11: Example of contribution look-up texture: While the maximum valence is set
to six, vertex no. 4 is shared by four elements (9, 6, 11 and 12), each involving
a different node and thus a different texture Ti, of which only the first two are
shown. Kernel accumulate will gather and accumulate the green contributions.

Mesh Elements Texture size (proposed) Texture size (Taylor)
200k 64.1 MB 24.4 MB

70k 22.4 MB 8.5 MB

Table 3.3: Memory demand of the proposed method compared to method of Taylor et
al. [88] with maximum valence Vmax = 42 and average valence Vavg = 16.

3.4.7 Personalization Procedure

In order to be predictive, personalization of the involved biomechanics and hemodynam-
ics models of our framework needs to be performed. As already described, the anatomy
model is generated from Cine MRI images and is thus inherently patient-specific. In addi-
tion to providing an anatomical model at end-diastasis, which is used for electrophysiol-
ogy simulation and the initial state in the biomechanics model, the employed segmentation
and tracking algorithm [100, 101] also allows to quantify the ventricular volume V in each
MRI frame. As a result, it is possible to derive the following values:

• Function of ventricular flow over time: Q(t) = Vt − Vt−1

• Stroke Volume (SV), defined as the blood volume ejected during a single heart beat:
SV = EDV − ESV , where EDV is the end-diastolic volume, and ESV the end-
systolic volume.

• Ejection Fraction (EF), defined as the ratio between stroke volume and end-diastolic
volume: EF = SV/EDV

The Windkessel models parameters for artery compliance are manually estimated based
on the computed ventricular flow Q(t) and invasively obtained pressure measurements
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(ventricular and arterial pressures). We do not personalize the atrial models and use nom-
inal values from the literature [41] instead.

Passive stress parameters of the biomechanics model are set as in [33]. The active stress
and boundary condition parameters are manually estimated to match left ventricular ejec-
tion fraction (EF ), stroke volume (SV ) and visible cardiac motion. To reach a good per-
sonalization, dozens of simulations are necessary, which only becomes feasible due to the
significant speed-up achieved by our GPU implementation.

3.5 Implementation Details

This section gives an overview which components of the presented framework were newly
implemented in the course of this work, and which existing components could be utilized.

• As outlined in section 3.2, an existing C++ machine-learning framework [101] was
used to segment and track heart anatomy from MRI images.

• An existing C++ toolbox for the rule-based assignment of fiber directions to the gen-
erated tetrahedral mesh was extended to correctly reflect state-of-the-art fiber sheet
directions [7], including the presented Log-Euclidean orthonormal basis interpola-
tion.

• In this work, an existing CUDA implementation of the LBM-EP algorithm [74] to
compute transmembrane potentials was optimized and extended to also compute
extracellular potentials [15] on the GPU.

• The boundary element solver [85] to map epicardial potentials to the torso, as well
as the calculation of ECG signals was newly implemented in C++. The system relies
on the Eigen library5, a template library for linear algebra, to solve linear systems.

• Training and evaluation of the proposed data-driven regression framework to esti-
mate myocardial diffusivity was newly implemented in MATLAB6. To allow inter-
active predictions, the trained regression model was integrated into the aforemen-
tioned C++ framework.

• All biomechanic and hemodynamic components of the dynamics equation presented
in sec. 3.4 were embedded in the SOFA framework7, an open source C++ software
library and application for finite element simulations. The passive stress compo-
nent (sec. 3.4.2) was newly implemented following the proposed GPU paralleliza-
tion strategy. NVIDIA CUDA8, version 5.5, served as development environment.
Existing implementations of active stress and mechanical boundary conditions were
significantly modified to also allow efficient GPU evaluation. While existing SOFA
implementations of atrium and arterial blood pressure models were employed, the
proposed isovolumetric constraint including the Taylor expansion-based pressure
prediction was newly implemented.

5Eigen C++ library for linear algebra, http://eigen.tuxfamily.org
6MathWorks MATLAB, http://www.mathworks.de/products/matlab
7Simulation Open Framework Architecture [1], http://www.sofa-framework.org
8Compute Unified Device Architecture, http://developer.nvidia.com/cuda-toolkit
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4 Experiments and Results

This chapter will report the results of all conducted experiments to evaluate the accuracy
and computational performance of our modeling framework. First, benchmark experi-
ments will shed light on the runtime performance of the various modeling components.
Thereafter, our forward model of electrophysiology and electrocardiograms is qualita-
tively evaluated and the intrinsic uncertainty of diffusion parameters estimated. We eval-
uate our data-driven EP calibration model with both synthetic and real case datasets. An
evaluation of the biomechanics and hemodynamics components concludes the chapter.

4.1 Experiment Data

The available datasets for our experiments were provided by our clinical partners from the
University Hospital Heidelberg, Department of Internal Medicine III - Cardiology, Angi-
ology and Pneumology, Heidelberg, Germany. We worked with the anonymized datasets
of 13 patients suffering from dilated cardiomyopathy with subnormal to severely abnor-
mal ejection fractions. Each dataset contained full heart cycle cine MRI images and heart
catheter pressure measurements.

4.2 Benchmarks and Computational Performance

We evaluated the computational performance of our framework by running the entire sim-
ulation pipeline on one representative patient case. Our experiments were conducted on a
system with a 16-core Intel Xeon 64-bit CPU at 2.4 GHz and an NVIDIA GeForce GTX 580
graphics card.

4.2.1 Cardiac Anatomy

The preparation times including the generation of the anatomical model are reported in ta-
ble 4.1. All runtimes refer to purely CPU computations. The trend in runtime for mesh gen-
eration and anatomical model computation for different mesh resolutions (meshes with
24k, 43k, 64k, 127k and 274k tetrahedra) is reported in fig. 4.1 (left panel).

Task CPU Runtime
MRI detection and tracking ≈ 2 sec / frame
Tetrahedral mesh generation 64.4 sec
Anatomical model computation 16.8 sec

Table 4.1: Preparation and anatomical model generation times for a mesh with 64k
elements.
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Figure 4.1: Performance comparison for different mesh resolutions. Left panel: Runtimes
for mesh generation and anatomical model computation, reported in log-scale.
Right panel: Runtimes for LBM-EP algorithm, using a 1.5× 1.5× 1.5mm grid.

4.2.2 Cardiac Electrophysiology

In table 4.2, the electrophysiology computation times using the LBM-EP algorithm are
reported for different grid spacings. Fixing the computational domain to a Cartesian grid
of 1.5× 1.5× 1.5mm and varying the mesh resolution, benchmark results as illustrated in
fig. 4.1 (right panel) were obtained. All reported computation times include the calculation
of extracellular potentials as required for the mapping to the torso.

Grid Spacing GPU Runtime
1.5 mm 2.8 sec
0.7 mm 21.7 sec

Table 4.2: Runtimes of LBM-EP algorithm for different grid spacings.

The projection of the extracellular potentials to the torso and the derivation of the the
ECG traces are simple matrix operations. Hence, the computation of the EP and ECG
forward model can be done in less than 3 seconds for a grid with an isotropic resolution of
1.5 mm. Similarly, the evaluation of a learned polynomial regression function is far from
being computationally expensive. The prediction of diffusion parameters for a patient
thus requires less than 10 seconds, mainly because three forward runs for the purpose of
normalization are needed.

4.2.3 Cardiac Biomechanics

For the evaluation of the biomechanics component of our framework, which is responsible
for the most significant runtimes, we fixed the general system parameters reported in table
4.3. One full heart cycle, lasting 0.8 seconds, was computed in all subsequent experiments.
Passive tissue parameters were set as in [33], and the active stress σ0 was fixed at 150 kPa.

Table 4.4 reports the runtimes for two different meshes. For the mesh with 64k tetrahe-
dra, the simulation only required 62 seconds, and even for the mesh with highest resolu-
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Parameter Value
Euler implicit time step 1 ms
Numerical threshold for CG solver 10−2 mm
Mass density 1.07 g/ml
Rayleigh damping coefficient (mass) 104

Rayleigh damping coefficient (stiffness) 10−1

Table 4.3: Fixed biomechanic model parameters.

Tetrahedra Avg. Edge Length CPU Runtime GPU Runtime Speed-up
64k 2.9 mm 0:11:46.8 h 0:01:02.5 h 11.3x
274k 1.8 mm 1:26:23.4 h 0:10:12.0 h 8.5x

Table 4.4: CPU and GPU full heart cycle runtimes of the biomechanical components for
two different mesh resolutions.

tion (274k), an entire heart cycle could be computed in 10 min and 12 seconds. On average,
we gained a mean speed-up factor of 10.6 (std. dev. 2.8) for different mesh resolutions (fig.
4.2, left panel). The overall runtime from image to model was 2 min and 31 seconds for
the mesh with 64k elements. Finally, scalability benchmarks on various graphics cards
with 48, 192, 480 and 512 CUDA cores are shown in fig. 4.2 (right panel) for two different
meshes.

Figure 4.2: Biomechanic model performance benchmarks. Left panel: Comparison be-
tween CPU and GPU runtimes for different mesh resolutions in log-scale. Right
panel: Scalability benchmarks showing GPU runtimes for two different meshes
on various graphics cards [98].
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4.3 Cardiac Electrophysiology

4.3.1 Experimental Protocol

For all 13 dilated cardiomyopathy patients, we generated a total of 4,200 EP simulations
on a 1.5mm isotropic Cartesian grid. Diffusivity coefficients were uniformly sampled be-
tween 1, 000mm2/s and 16, 000mm2/s under the constraints cMyo ≤ cLV and cMyo ≤ cRV
such that the Purkinje fibers in both ventricles conduct faster than the surrounding my-
ocardium.

4.3.2 Forward ECG Model Evaluation

We evaluated our forward model of electrophysiology by running experiments with dif-
fusion parameters listed in table 4.5. Normal EP was modeled with nominal diffusivity
from literature, and a left bundle branch block (LBBB) scenario was modeled by reducing
cLV to 5, 000mm2/s. Fig. 4.3 illustrates the computed Einthoven ECG leads VI and VII for
both configurations.

Configuration cMyo (mm2/s) cLV (mm2/s) cRV (mm2/s)
Normal 1,000 16,000 16,000
LBBB 1,000 5,000 16,000

Table 4.5: Diffusion parameters configurations for forward model evaluation.

Figure 4.3: QRS complex in simulated limb ECG leads VI and VII in normal and left bundle
branch block (LBBB) physiology [97].

4.3.3 Uncertainty Analysis

Based on the 4,200 simulations, we empirically estimated the uncertainty in diffusion
parameters given a pair of ∆QRS and α under our forward model. As the dataset con-
tained simulations on different patient anatomies, normalized parameters were used for
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this study to minimize the influence of geometry. All pairs of (∆QRS , α) were grouped in
20× 20 bins, and for each bin, the standard deviation (SD) of cMyo, cLV and cRV was calcu-
lated independently. Table 4.6 reports the total SD for the entire dataset, and the average
local (bin-wise) SD relative to the total SD for cMyo, cLV and cRV , respectively. As shown in
fig. 4.4, the highest local uncertainty (up to 150% of total SD) is found in the healthy range
of parameters, i.e. in the center of the plots.

cMyo cLV cRV
Total SD (entire dataset) 2, 146mm2/s 4, 142mm2/s 4, 123mm2/s
Average local SD in % of total SD 20% 52% 40%

Table 4.6: Total and local standard deviation (SD) in dataset of 4,200 EP simulations.
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Figure 4.4: Empirical estimate of diffusion uncertainty [97].

4.3.4 Evaluation of the Calibration Model with Synthetic Data

We performed leave-one-patient-out cross-validation using the entire dataset of 4,200 sim-
ulations. Table 4.7 relates the average prediction error with the empirically estimated un-
certainty reported in the previous section. Without normalization, errors were between
114% and 440% of the total standard deviation.

cMyo cLV cRV
Average prediction error 23% 56% 55%
Empirically estimated uncertainty 20% 52% 40%

Table 4.7: Average prediction error of leave-one-patient-out cross-validation, and esti-
mated uncertainty for comparison. All figures in % of total standard deviation.

Next, we evaluated the accuracy of the regression model in the observable space of ECG
parameters. For that purpose, we ran an additional forward simulation with the predicted
diffusion coefficients, and compared ∆QRS and α with the known ground truth. In order
to assess the precision of the simulations obtained using our regression-based calibration
method, we compared with two alternative methods:
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• First, we compared with simulation results generated using nominal diffusion pa-
rameters from literature (configuration ”Normal” in tab. 4.5).

• Second, we employed NEWUOA [72], a standard gradient-free inverse problem method,
to predict diffusion parameters. The cost function was defined as follows:

f(∆i
QRS , α

i) = (∆known
QRS −∆i

QRS)2 + λ(αknown − αi)2 (4.1)

Hereby, superscripts i denote the iteration index, and the weighting factor λ = 0.1
accounts for the different orders of magnitude between ECG parameters. Tissue dif-
fusivities were estimated within 23%, 64% and 54% of the total SD for cMyo, cLV and
cRV , respectively. For each estimation, NEWUOA took about 10min to converge.

Figure 4.5: QRS duration and electrical axis error distributions for ECG simulations with
nominal (top), NEWUOA-predicted (center) and regression-predicted (bottom)
diffusivity parameters [97].

Error distributions for ECG simulations with nominal parameters, NEWUOA-predicted
diffusion parameters, and diffusivities estimated using our proposed regression model are
reported in fig. 4.5 and table 4.8. Calibrated simulations were significantly (t-test p-value
< 0.001) more precise than those obtained with nominal diffusivity values. In addition,
it should be noted that while our prediction was on average centered around the ground
truth QRS duration (average bias: +0.5ms), the ∆QRS calculated with default parameters
was 19.0ms too short.

4.3.5 Evaluation of the Calibration Model on Real Cases

Finally, we evaluated our calibration method on four DCM patients, for which clinical ECG
was available. Using the trained regression model, diffusivity coefficients were estimated
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QRS Duration ∆QRS (ms) Electrical Axis α (deg)
Default 19.8± 14.3 4.3± 3.4
NEWUOA 8.7± 11.1 −0.2± 7.6
Our Method 4.9± 5.5 1.6± 1.7

Table 4.8: Mean and standard deviation of QRS duration and electrical axis error distribu-
tions for ECG simulations with nominal, NEWUOA-predicted and regression-
predicted diffusivity parameters.

based on measured QRS duration and electrical axis angle. In one case, myocardium diffu-
sivity could not be predicted because the measured electrical axis (α = −63◦) was outside
the range of the training set. However, we were able to obtain plausible diffusion coef-
ficients (2426 − 7584mm2/s for cMyo, and 6691 − 12532mm2/s for cLV and cRV ) for the
other three patients. The average prediction error of the ECG using the calibrated forward
model are reported in table 4.9. Figure 4.6 illustrates the calculated ECG overlaid on top
of the real ECG for one patient.

QRS Duration ∆QRS (ms) Electrical Axis α (deg)
Average error 0.35± 0.28 15.6◦ ± 9.6

Table 4.9: Average prediction error for three real case simulations.

Figure 4.6: Measured (black) and simulated (blue) ECG leads after model calibration for
one patient. The green bars highlight the QRS complex, which was subject to
calibration.
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4.4 Cardiac Biomechanics

4.4.1 Evaluation of Isovolumetric Constraint

The performance of the proposed constraint to keep the ventricular volume constant dur-
ing isovolumetric phases is evaluated on one representative patient case. We computed
cardiac EP using nominal diffusion parameters for one full heart cycle. The biomechan-
ical simulation was run for two consecutive heart cycles, repeating EP signals triggering
myocyte contraction with a period of T = 0.8 seconds.

In figure 4.7, we compared our approach with a penalty force defined by

Fpen(t) =
Z
kiso (V (t)− V0) n dS (4.2)

where V (t) is the ventricular volume at time t, and V0 the ventricular volume at the be-
ginning of the isovolumetric phase. The term n dS contains the lumped area vectors of the
endocardial surface according to equations 3.42 and 3.43. Hence, the penalty factor kiso can
be understood as corrective pressure and is estimated manually for this experiment. The
penalty force can be computed very efficiently, but does not necessarily ensure constant
volume.

Figure 4.7: Left ventricular flow (change of volume) for two heart cycles, comparing the
effectiveness of the proposed isovolumetric constraint with a penalty force
method. The two methods only differ during isovolumetric phases as high-
lighted with red circles.
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4.4.2 Evaluation on Real Cases

For five datasets of DCM patients, we manually personalized the biomechanical model
as described in sec. 3.4.7 using the MRI images and catheter pressure measurements. In
doing so, we tried to match the cardiac motion, left ventricular ejection fraction and stroke
volume of each patient. For the electrophysiology, we also used nominal diffusion param-
eters in this experiment. Table 4.10 reports measured and computed ejection fractions and
stroke volumes for all patients. For the patient with largest contraction, fig. 4.9 illustrates
our personalized model overlaid on MRI slices, while fig. 4.8 shows the left ventricular
pressure and volume over time.

Patient EFm EFc SVm (ml) SVc (ml)
1 41% 36% 106 91
2 14% 12% 40 33
3 27% 23% 67 56
4 15% 17% 71 80
5 34% 30% 85 66

Table 4.10: Comparison of left ventricular measured (EFm) and computed (EFc) ejection
fractions, and measured (SVm) and computed (SVc) stroke volumes (in ml) for
5 cases.

Figure 4.8: Personalization results for the patient with largest contraction. Left panel
shows pressure curve and right panel volume curve for the left ventricle [98].

49



4 Experiments and Results

Figure 4.9: Personalization results for the patient with largest contraction. Long-axis (top)
and short-axis (bottom) slices show MRI images and personalized model at
various time steps throughout one heart cycle [98].
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While the previous chapter reported results from the conducted experiments, this chapter
will discuss obtained findings. Interpretations of benchmark results on the computational
performance will be followed by a thorough discussion of our evaluation results on the
presented electrophysiology and biomechanics models.

5.1 Benchmarks Experiments

The conducted benchmark experiments are divided into three distinct parts: (1) The prepa-
ration and generation of the anatomical model, (2) the computation of cardiac electrophys-
iology, and (3) the simulation of cardiac biomechanics.

Regarding the preparation and anatomical model generation times, it should be noted
that benchmark results are only reported for the sake of completeness. The focus of this
work was laid on the cardiac electrophysiology and biomechanics components, therefore
no special runtime optimization was performed. Also, due to the fact that these steps are
only required once per patient, serial execution on the CPU was considered sufficient. The
employed tracking and detection framework already performs fast, and for both the tetra-
hedral mesh generation and the computation of the anatomical model, parallelization op-
timizations for GPU architectures have the potential to improve the runtime performance
significantly.

Results show that the computation times of the LBM-EP algorithm are independent of
mesh resolution, which is not surprising as the method operates on Cartesian grids rather
than tetrahedral elements. Runtimes of less than three seconds for the simulation of an
entire heart cycle are near-real time and are a prerequisite for our data-driven regression
model: Only because of this excellent runtime behaviour we could produce a large number
of synthetic datasets for regression model training. Reported computation times indicate
a speed-up of up to 40.5× compared to a CPU implementation of the same algorithm.
In total, the algorithm is between two and three orders of magnitude faster than current
FEM-based approaches with meshes of comparable resolution [98]. We also consider the
required time to calibrate the EP model for an unseen patient as clinically feasible.

The reported average speed-up factor of 10.6× for the biomechancal model shows that
the proposed GPU implementation strategy is able to sufficiently accelerate the model
evaluation for a complete heart cycle such that user interaction with the model becomes
possible, an essential requirement for applicability in clinical routine: Only the possibility
to perform full heart cycle biomechanical simulations in a short time allows the extensive
estimation of patient-specific model parameters. Also the overall runtime from image to
biomechanical model is in the range of clinical feasibility. Regarding the scalability bench-
marks, our results indicate that the computation time is linearly dependent on the number
of available cores, with higher scalability as the mesh size increases. In this respect, the
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result on the mobile system (Quadro NVS 4200M) has to be excluded due to its different
architecture.

5.2 Cardiac Electrophysiology

The evaluation of the forward model of EP and ECG shows realistic R and S wave trends.
The model was able to capture a prolonged QRS complex in the left bundle branch block
scenario due to the slow conduction. It should be noted that our model does not incor-
porate atrial electrophysiology, therefore P waves are not visible in the ECG traces. The
absence of Q waves in the obtained results could be explained by the fact that we trigger
the entire septum area simultaneously in our model, neglecting the effect of His bundle
conduction.

The presented uncertainty analysis clearly reflects the ill-posed nature of the ECG in-
verse problem under our forward model. We did not expect a low local standard deviation
in the 20 × 20 bins when we conducted our experiments, but we were surprised that the
variation could exceed 100% of the total standard deviation in some parameter ranges. Al-
together, the results constitute a first empirical estimate of the optimal bound in accuracy
for any inverse problem method aiming to estimate myocardium diffusion that relies on
the two features ∆QRS and α only. Considering more ECG parameters may significantly
decrease the uncertainty.

In accordance, the average prediction errors for our synthetic dataset were in the range
of the estimated uncertainty. Therefore, we conclude that our regression model was an
appropriate tool to estimate myocardium diffusion provided our dataset. The fact that
predication errors were much higher without normalization shows that our method was
able to compensate for inter-patient geometry variability.

The reported errors for our regression-based predictions in ECG space (∆QRS and α)
were in the range of clinical variability. The presented error distributions of ECG simu-
lations with nominal diffusivity from literature, and the conducted t-test clearly indicate
that using the proposed method may be preferable to using default diffusion parameters
when only ECG is available. We expected that the QRS duration calculated with nomi-
nal parameters would on average be too short, because default parameters correspond to
healthy physiology whereas conduction abnormalities cause prolonged QRS durations.

Similarly to our proposed method, we were able to estimate myocardium diffusion with
NEWUOA using the cost function eq. 4.1 close to the limit of data uncertainty. The mean
error in α was comparable to the regression model. However, the average error in ∆QRS

was significantly biased compared to our approach. Therefore, our method did not yield
more predictive calibrations but was also 60×more efficient.

Regarding the real case experiments, we consider the average error in ∆QRS of less than
half a millisecond excellent. Also the average error in α is noteworthy because the normal
range of electrical axis exceeds 90◦. The presented overlay of measured and computed
ECG traces shows a good match of the QRS complex in nearly all leads. However, the
failure of calibration in one patient case leaves an open challenge for future work.
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5.3 Cardiac Biomechanics

The reported results indicate that the proposed isovolumetric constraint outperforms the
standard penalty force approach against which we compared. In contrast to the penalty
method, the volumetric flow was very close to zero during the four isovolumetric phases
(two consecutive heart cycles) for the proposed constraint. However, slight peaks in the
ventricular flow at the beginning or the end of the isovolumetric phases might require
special handling for numerical stability.

Reported ejection fractions and stroke volumes for the five real case experiments show
promising agreement. Also, the volume and pressure curves generated by our biomechan-
ical model qualitatively represented the measured values. The overlays of the personalized
model at various time steps throughout one heart cycle over short and long axis MRI slices
show that we were successful in modeling realistic cardiac motion. It should be noted that
the reported patient case was the one with largest contraction, i.e. the most difficult to
achieve a good match. Furthermore, simulated left ventricular motion matched the image
sequences better than the motion of the right ventricles. This is because, during person-
alization, we concentrated on the left ventricle only, both in terms of parameter selection
and outcome comparison.
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6.1 Conclusion

In this work, an integrated modeling framework of cardiac function is developed, extend-
ing existing models of heart anatomy, electrophysiology and biomechanics. In addition,
novel approaches to facilitate the estimation of patient-specific model parameters are in-
troduced.

The contribution of this work to the scientific community is twofold: First, a novel strat-
egy to parallelize the evaluation of stress and various mechanical boundary conditions in
a biomechanical model of cardiac function is presented. Exploiting current GPU architec-
tures, our method allows an efficient, high-performance implementation of state-of-the-art
myocardium tissue models. In addition, the presented model of cardiac motion during iso-
volumetric phases outperforms alternative approaches in terms of accuracy while main-
taining the overall computational performance of the framework. The proposed method
therefore facilitates a clinically feasible estimation of patient-specific model parameters,
which is greatly dependent on the time required for full heart cycle simulations.

Second, regarding cardiac electrophysiology models, a novel data-driven personaliza-
tion approach from clinically available 12-lead ECG is presented. The proposed method
couples an existing GPU implementation of a mono-domain Lattice-Boltzmann model of
cardiac electrophysiology with a boundary element formulation of body surface poten-
tials. With this highly efficient forward model in place, we were able to train a polyno-
mial regression model on QRS duration and electrical axis of ECG simulations and predict
myocardium diffusion parameters. Our experiments have shown that the calibration of
patient-specific electrophysiology models is possible from standard ECG measurements,
with significant improvement with respect to nominal diffusivity values and better pre-
dictive power compared to NEWUOA calibration. As a result, our unique regression
method can provide good preliminary personalization. Also, for the first time to the best
of our knowledge, we were able to empirically quantify the uncertainty in estimated my-
ocardium diffusion given the two employed ECG features under our forward model.

Altogether, our framework yields medically expedient results because of a better estima-
tion of personalized model parameters, and thus becomes applicable for clinical therapy
planning. It may provide physicians a useful tool to plan cardiac interventions and com-
pute predictors of therapy outcome in silico. Hence, our modeling framework has the
potential to help clinicians to offer more personalized treatment and eventually improve
the outcome of medical interventions in the future.

We appreciate the very positive response of the research community (see section 6.3), as
it indicates the high importance of the topic. Based on the scientific impact, future work in
this direction is highly encouraged.
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6.2 Perspectives

Our integrated biomechanical framework includes a huge number of different models,
each taking care of a particular aspect of cardiac physiology. While some models, for
instance the Holzapfel-Ogden model of passive tissue stress, are state-of-the-art, also sim-
plified models are employed to ensure an expedient runtime performance. In terms of
the active stress induced by muscle contraction, a more recent model of length-dependent
active forces could be included.

Regarding the hemodynamic components of the model, various ways of future improve-
ment are possible. On the one hand, coupling atrial and arterial pressure models by sim-
ulating systemic and pulmonary circulation might constitute a first step toward improved
pressure conditions. On the other hand, modeling realistic blood flow by integrating a
computational fluid dynamics (CFD) solver into the framework may lead to more realistic
flow patterns and improve the coupling between hemodynamics and biomechanics.

Currently, only ventricular physiology is captured in our framework. Although chal-
lenging due to their complex and in medical images difficultly detectable anatomy, the
inclusion of atria in all components might greatly increase the framework’s clinical appli-
cability. Realistic sinus node excitation patterns could be modeled, allowing the calculation
of complete ECG traces including P waves. A complete heart model with all four cham-
bers may open the framework to investigation of different heart disorders such as atrial
fibrillation, which cannot be captured with the existing framework.

With many models constituting the overall framework, a great number of model param-
eters needs to be considered in order to be patient-specific. For many models, standard
or nominal values from literature are used. For cardiac electrophysiology, a calibration
method is proposed, but important parameters for cardiac biomechanics such as the max-
imum active contraction, arterial compliance and the strength of mechanical boundary
conditions are manually estimated. Therefore, more automatic methods for parameter ad-
justment and patient personalization may be investigated.

The proposed regression method has been shown to outperform using nominal diffusiv-
ity coefficients from literature. However, it can only perform as preliminary personaliza-
tion due to the intrinsic uncertainty of diffusion parameters when only two ECG features
are used. Future extensions may include more data such as the entire ECG traces, allow-
ing to predict more regional diffusion distributions for a particular myocardium model.
Also, more sophisticated statistical approaches such as non-linear manifold learning may
be able to improve the predictive performance on unseen data.

In addition, the forward model itself is based on various assumptions. For instance,
the employed boundary element formulation assumes constant and isotropic conductivity
in the torso. Possible improvement hence include taking different conductivities of tho-
racic organs into account, or using the actual torso shape derived from medical images
instead of a torso atlas for ECG calculation. A personalization of the varying action po-
tential duration throughout the myocardium might provide realistic modeling of myocyte
repolarization and lead to an enhanced biomechanic contraction behaviour and correct T
waves in the ECG traces.

Naturally, the comparison of our method with NEWUOA-based calibration is depen-
dent on the employed cost function. In this work, the cost function was defined as sum
of squared differences, corrected for different orders of magnitude in QRS duration and
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electrical axis. A more detailed investigation of suited cost functions may lead to better
predictive results using the NEWUOA optimizer.

Finally, in this work, cardiac electrophysiology and biomechanics are only weakly cou-
pled. Currently, electrophysiology is computed on a static geometry at end-diastasis,
therefore neglecting the effect of the myocardium motion. Considering the biomechani-
cal behaviour during electrophysiology evaluation will not only enable us to quantify the
error introduced by assuming a static myocardium but may in turn also allow to improve
the biomechanical components using enhanced active force estimations.

6.3 Publications

The work realized in the course of this master thesis yielded the following publications:

International Peer-Reviewed Conference Articles

1. O. Zettinig, T. Mansi, B. Georgescu, S. Rapaka, A. Kamen, J. Haas, K.S. Frese, F.
Sedaghat-Hamedani, E. Kayvanpour, A. Amr, S. Hardt, D. Mereles, H. Steen, A.
Keller, H. Katus, B. Meder, N. Navab, D. Comaniciu. From Medical Images to Fast
Computational Models of Heart Electromechanics: An Integrated Framework to-
wards Clinical Use. Proceedings of the 7th International Conference on Functional Imag-
ing and Modeling of the Heart (FIMH), London, UK, June 2013 [98].

2. O. Zettinig, T. Mansi, B. Georgescu, E. Kayvanpour, F. Sedaghat-Hamedani, A. Amr,
J. Haas, H. Steen, B. Meder, H. Katus, N. Navab, A. Kamen, D. Comaniciu. Fast
Data-Driven Calibration of a Cardiac Electrophysiology Model from Images and
ECG. Proceedings of the 16th International Conference on Medical Image Computing and
Computer Assisted Interventions (MICCAI), Nagoya, Japan, September 2013 [97].

MICCAI Young Scientist Award 2013

3. T. Mansi, R. Beinart, O. Zettinig, S. Rapaka, B. Georgescu, A. Kamen, M.M. Zvi-
man, D.A. Herzka, H.R. Halperin, D. Comaniciu. Towards Pre-Clinical Validation
of LBM-EP for the Planning and Guidance of Ventricular Tachycardia Ablation.
Proceedings of MICCAI Workshop on Statistical Atlases and Computational Models of the
Heart (STACOM), Nagoya, Japan, September 2013 [48].

4. B. Georgescu, S. Rapaka, T. Mansi, O. Zettinig, A. Kamen, D. Comaniciu. Towards
Real-Time Cardiac Electrophysiology Computations Using GP-GPU Lattice-Boltzmann
Method. Proceedings of MICCAI Workshop on High Performance Computing for Biomedi-
cal Image Analysis (HPC-MICCAI), Nagoya, Japan, September 2013 [27].

International Peer-Reviewed Journal Articles

A journal article is in preparation and will be submitted to Medical Image Analysis in Jan-
uary 2014.
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du second ordre-Applications à la mécanique cardiaque. PhD thesis, Ecole Doctorale de
l’Ecole Polytechnique, Paris, 2008.

[59] Jesper Mosegaard, Peder Herborg, and Thomas Sangild Sorensen. A GPU accel-
erated spring mass system for surgical simulation. Studies in health technology and
informatics, 111:342–348, 2005.
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