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Abstract. The diagnostic quantification of thyroid gland, mostly based
on its volume, is commonly done by ultrasound. Typically, three orthog-
onal length measurements on 2D images are used to estimate the thyroid
volume from an ellipsoid approximation, which may vary substantially
from its true shape. In this work, we propose a more accurate direct
volume determination using 3D reconstructions from two freehand clips
in transverse and sagittal directions. A deep learning based trajectory
estimation on individual clips is followed by an image-based 3D model
optimization of the overlapping transverse and sagittal image data. The
image data and automatic thyroid segmentation are then reconstructed
and compared in 3D space. The algorithm is tested on 200 pairs of sweeps,
and shows that it can provide fully automated, but also more accurate
and consistent volume estimations than the standard ellipsoid method,
with a median volume error of 11%.

1 Introduction

Ultrasound imaging has been for a long time the gold standard for thyroid assess-
ment, thus replacing clinical inspection and palpation [1]. The current workflow
is to perform 2D measurements on ultrasound planes and combine them into a
volume using the so-called ellipsoid formula, a very coarse approximation which
leads to uncertainties [11] and sub-optimal reproducibility. In this context, cre-
ating a 3D reconstruction of the thyroid would bring several benefits: (i) it would
allow a more precise volume estimation of either thyroid or suspicious masses
than 2D imaging [6], and (ii) it could ease matching of the same anatomy, en-
abling easier and more reliable regular screening of the population at risk. One
way to achieve this could be 3D ultrasound solutions such as a dedicated 3D
transducer, or an external tracking of a 2D probe [13]. Such approaches have
not found widespread adoption though, mostly due to the high cost or cumber-
some setup.

It has recently been shown that it is possible to reconstruct the 3D trajectory
of a freehand ultrasound clip using deep learning [8]. Combined with a thyroid
segmentation method (see for instance [2, 5] for deep learning-based approaches,
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Fig. 1. Overview of the proposed method for 3D thyroid reconstruction from two per-
pendicular sweeps.

or [3] for a more generic and thorough review), this could enable a better assess-
ment of its volume. However, this approach might still suffer from drift degrading
the accuracy of such a measurement. In this paper, we therefore propose to build
upon such methods by exploiting the redundancy from two perpendicular free-
hand acquisitions: out-of-plane distances in one sweep can be precisely recovered
from the other sweep since they appear in-plane. In order to do so, our approach
will aim at registering those two acquisitions while jointly refining their own tra-
jectories. This is to our knowledge the first time a consistent 3D reconstruction
of the thyroid on untracked freehand 2D ultrasound clips is presented, accurate
enough to utilize volumetric lesion measurements.

2 Methods

Our overall approach takes two ultrasound clips as input, slow-swept in transver-
sal (TRX) and sagittal (SAG) directions over one side of the thyroid gland (right
or left). The output are two registered volumetric representations which are vi-
sually presented to the clinician, along with a 3D thyroid gland segmentation.
An overview of the computational pipeline is shown in Figure 1, each step of
which is described below.

2.1 Deep Learning Tracking Estimation

Similarly to [9], we first train a convolutional neural network (CNN) to estimate
the trajectory of the probe during the sweep based on the video clip. The network
uses as input a 4-channel image (two successive ultrasound frames, and the
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2D optical flow in-plane motion between them encoded as two channels) and
produces the 6 pose parameters (3 for translation, 3 for rotation) of the relative
3D motion. No changes have been introduced to the network architecture or
learning parameters compared to [9]. When applied for all successive frame pairs
and therefore when accumulated, the entire trajectory can be reconstructed.
Even though this method is able to capture the global motion of the probe,
it might still yield some drift which would significantly degrade the estimation
of the volume. We therefore rely on the complementary information from two
perpendicular sweeps to fix this potential drift.

2.2 Joint Co-Registration & Reconstruction

Initial Registration With both the transversal and sagittal sweep available
in a first 3D representation, a set of 3D volumes in a Cartesian grid is created
of both the B-Mode intensities and their pixel-wise labeling, using an efficient
GPU-based compounding algorithm similar to [4]. An initial rigid transformation
between them is derived by assuming standardized scan directions, as well as by
matching the segmented thyroid volumes with a rigid registration. This rigid
transformation is further optimized by maximizing a cross-correlation metric
over the image intensities. This aligns the bulk of the anatomical structures
roughly, despite possibly incomplete thyroid visibility (and hence segmentation)
in both sweeps. Most of the drift by the initial sensorless reconstruction method
cannot really be fixed at this point, since the out-of-plane lengths of the sweeps
stay fixed.

Trajectory Refinement via Co-Registration The reconstruction of both
sweeps is then simultaneously refined by optimizing a number of trajectory pa-
rameters, together with the rigid transformation between the sweep centers, with
respect to an image similarity on the B-Mode intensities. Since the 3D geome-
try within an ultrasound volume changes during this optimization, an on-the-fly
multi-planar reconstruction (MPR) method is required to compare individual
frames from one sweep with a compounded image from the other one. A related
technique was presented in [12] for image-based optimization of the probe-to-
sensor calibration for externally tracked 3D freehand ultrasound. We generalize
it to optimize any parameters affecting the 3D topology of un-tracked data.
A cascade of non-linear optimization using a Nelder-Mead search method are
executed with increasing degrees of freedom (DOF) parameters as follows:

– 10 DOF: Relative rigid pose plus 2 DOF per sweep, corresponding to an ad-
ditional out-of-plane stretch, and rotation around the probe surface between
the first and last frames of the sweep, as drift correction from the sensorless
reconstruction method.

– 18 DOF: As above, with the 2 DOF per sweep replaced by a 6-DOF rigid
pose between the first and last frame.

– 30 DOF: As above, with an additional 6 DOF pose control point in the
center of the sweeps, realized through Hermite cubic spline interpolation on
the individual rigid pose parameters.
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– 54 DOF: As above, with 3 control points per sweep instead of one, placed
in an equidistant manner over the number of image frames.

2.3 Automated Thyroid Segmentation

Thyroid gland segmentation has been studied for many years in the literature.
Following the recommendation in the review [3], we opted to segment each 2D
ultrasound frame using a very standard U-Net [10] neural network. Using the
same trajectory found in the previous steps, we then compound those label maps
in both transversal and sagittal sweeps into 3D binary masks. After minor post-
processing (morphological closing), the final segmentation is defined as the union
of the two 3D segmentations, coming respectively from the transversal and cor-
responding sagittal sweep.

The whole pipeline is implemented in the C++ ImFusion SDK, with OpenGL
shaders for similarity measure computation and image compounding, and CUDA
for the deep learning models. The overall computation time on a standard desk-
top computer is in average 3 minutes, the deep learning based segmentation and
tracking estimation take approximately 10 seconds per sweep, while the succes-
sive stages of the joint sweep reconstruction take from 20 seconds to 1 minute.
The computation time can be further reduced by running the tracking estimation
and the segmentation in the background during the acquisition.

3 Experiments and Results

3.1 Data Acquisition

Our method is evaluated using a dataset of 180 ultrasound sweeps from 9 vol-
unteers acquired from a Cicada research ultrasound machine (Cephasonics, Inc.,
Santa Clara, CA, USA) with a linear probe. For each volunteer, we acquired 5
transversal and 5 sagittal sweeps for each lobe of the thyroid. The aquisitions
were performed by three different operators (the transversal top to bottom and
the sagittal starting from the trachea) with variations in the aquisition speed, ex-
tend of the captured anatomy, tilt angles. Following guidelines in [8], the sweeps
have been tracked using an optical tracking system and recorded without speckle
reduction or scanline conversion.

In order to train and evaluate our method, the thyroid was manually seg-
mented by several operators on a subset of the sweeps. The volunteers were then
split into a training (5) and testing (4) subset; the first set was used to train
all networks as well as fine-tune the registration parameters and contains 100
sweeps, the latter was left out for the evaluation of the method and contains 80
sweeps.

3.2 Experiments

Our evaluation design is driven by the 3D thyroid segmentation, in particular
its consistency between TRX and SAG sweeps, as well as the volume estimation



3D thyroid assessment from untracked 2D ultrasound clips 5

since this is the relevant clinical measure. We ran our whole pipeline with dif-
ferent configurations to test our various hypotheses. All results are summarized
in Table 1 and discussed below.

Table 1. Results of the experiments on co-registered sweeps without tracking informa-
tion. The Dice coefficient TRX/SAG represents the overlap between the 3D segmen-
tation of the thyroidal gland computed from the transversal and sagittal sweeps. This
number is used as quality metric for all the sweep co-registration methods presented.
As reference the Dice overlap computed with the ground truth tracking is reported.
All numbers are means ± standard deviation if not otherwise specified.

exp. sweep Dice TRX/SAG volume norm. vol. rel. trajectory rel. length
# co-registration mean ± std (median) error error error error

1 ground truth tracking 0.69 ± 0.13 (0.72) N/A N/A N/A N/A
2 rigid reg. 0.61 ± 0.14 (0.63) 2.09 ± 1.44 mL 0.25 ± 0.13 0.16 ± 0.06 0.22 ± 0.13
3 10-DOF refinement 0.64 ± 0.12 (0.65) 1.22 ± 1.46 mL 0.14 ± 0.16 0.16 ± 0.06 0.17 ± 0.14
4 18-DOF refinement 0.64 ± 0.12 (0.66) 1.14 ± 1.48 mL 0.14 ± 0.16 0.17 ± 0.09 0.16 ± 0.14
5 30-DOF refinement 0.65 ± 0.12 (0.66) 1.15 ± 1.47 mL 0.14 ± 0.16 0.16 ± 0.09 0.16 ± 0.14
6 54-DOF refinement 0.66 ± 0.12 (0.68) 1.15 ± 1.45 mL 0.14 ± 0.16 0.16 ± 0.09 0.16 ± 0.14

Thyroid Segmentation The ground truth thyroid segmentations were an-
notated by a single non-expert operator on 58 sweeps, 50 of them from the 5
volunteer training subset and the remaining 8 from the 4 volunteer testing subset
(1 pair per lobe per test volunteer). The segmentation U-Net was trained and
evaluated on the first 50 sweeps from training subset. The segmentation U-Net
achieves a median Dice coefficient of 0.85 on our validation set of 2D frames.

After 3D compounding of the individual frames, the Dice coefficient between
manual segmentation and network output drops to an average of 0.73 ± 0.08
because of inconsistencies across slices or ambiguity near the ends of the thyroid,
which is in agreement with the scores recently reported in [13]. Due to the fact
that each orthogonal sweep captures a slightly different view of the thyroid, also
the Dice coefficient between compounded TRX and compounded SAG sweeps
with manual annotation is not 1, but rather around 0.70 ± 0.05. Since those two
numbers are in the same range, we then assume that, in the context of registra-
tion evaluation and because segmentation is not the focus of the paper, metrics
on the network output are a good proxy for metrics on manual segmentations.
This allows us to consider all the 200 possible pairs of test sweeps in the next
experiments (25 pairs per lobe per test volunteer) instead of the 8 which are
manually labeled (1 pair per lobe per test volunteer).

Single Sweep vs Multi-Sweep Due to the residual drift of the tracking es-
timation network, evaluating the thyroid volume from a single untracked sweep
produces inaccurate estimates with, according to our early experiments, a 45%
error. We therefore conclude that a second perpendicular sweep is required to
bring the missing out-of-plane information. In the experiments #2 to #6, we use
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Fig. 2. Comparison of the estimated vol-
ume with ground truth tracking versus
estimated trajectory on the 200 pairs of
sweeps (Spearman correlation = 0.75).
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Fig. 3. Volume difference between true
thyroid volume and estimated volume for
both the ellipsoid method and our pro-
posed approach on the 8 cases with manual
segmentation.

two such sweeps, which indeed yields a significant improvement of all reported
metrics.

Trajectory Refinement We evaluated the thyroid volume assessment at dif-
ferent stages of our refinement pipeline (from 10 to 54 DOF). Our experiments
#3 to #6 demonstrate the benefit of further adjusting the trajectory of the two
sweeps using our joint registration/trajectory refinement approach. According to
a Wilcoxon statistical-test with a p-value threshold of 0.01, differences become
irrelevant for motion corrections with more than 18 DOF. Furthermore, we com-
pared the estimated sweep trajectories at each stage with their corresponding
ground truth trajectories. To this purpose we defined the relative trajectory error
as the cumulative in-plane translation error at each sweep frame divided by the
ground truth sweep length, and similarly the relative length error as the relative
error of the estimated sweep length w.r.t the ground truth length. The values
of the relative trajectory and length errors are reported in the two rightmost
columns of Table 1. With the same statistical-test settings as in the thyroid vol-
ume assessment, we conclude that the joint registration significantly improves
the initially estimated overall length drift of the sweep, while there is no sub-
stantial change in the local trajectory estimation. The latter can be attributed
to some extent to the error of the ground truth external tracking, i.e. the true
local probe & tissue motion is not known with sufficient accuracy.

Figure 2 shows a comparison of the thyroid volume between the ground
truth tracking and the estimated tracking. The two quantities are in strong
agreement, with a Spearman correlation of 0.75, although the estimated volumes
tends to be smaller than the ground truth ones. This is due to the fact that
the tracking estimation network tends to underestimate the out-of-plane motion
between frames on unseen sweeps, an issue that we will further investigate in
future works.
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ground truth tracking + linear registration

trajectories from neural network + linear registration

refined trajectories (54 DOF) after co-registration

Fig. 4. 3D Reconstruction of two perpendicular sweeps of a thyroid. The four columns
respectively show: (i)/(ii) blending of the two sweeps in two perpendicular planes, (iii)
the registration of the two sweeps, (iv) 3D view of the resulting segmentation.

To further demonstrate the reliability of our volume estimation approach,
we compare it against the current clinical workflow, i.e. the ellipsoid formula,
which consists in measuring the three dimensions of the thyroid in two perpen-
dicular planes and multiplying them with a factor of 0.529 (see [11]). We report
in Figure 3 our final volume estimation as well as the ellipsoid-based estimate,
compared to the ground truth segmentation, on the 8 cases for which it is avail-
able. Our method yields more consistent and accurate estimates than the current
clinical standard (median error of 12% vs 42%).

Finally, we show in Figure 4 qualitative results on a representative case of our
dataset, where we notice a stronger agreement between the two sweeps after our
trajectory refinement. Here, the visual appearance is arguably even better than
for the ground truth because internal tissue motion can be partially compen-
sated, which is not possible with external tracking alone. This also illustrates
that there is an inherent limit in ground truth accuracy for our experimental
setup.
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Fig. 5. Reconstructed frames from transversal and sagittal clips (left, middle), together
with their 3D rendering (right) of a patient scan.

3.3 Application on Clinical Data

In an ongoing prospective study, patients undergoing screening for suspicious
thyroid masses are scanned with a Philips iU22 ultrasound machine. Written
consent was obtained from all patients prior to the examination. For each patient
the following scans are performed:

1. Conventional thyroid ultrasound by a routine clinical protocol which includes
transversal and sagittal greyscale still images and cine sweep images through
both thyroid lobes with a L12-5 probe.

2. Multiple 3D ultrasound volume data acquisitions with a VL13-5 transducer
through the thyroid lobe, including transversal and sagittal orientations of
the probe.

Three independent radiologists are measuring the thyroid nodules in three planes
with the ellipsoid formula (two faculty radiologists and a fellow radiologist, all
of whom had performed over 1000 thyroid ultrasound scans prior to this study).
The first cases show the vast variability in the volumetric measurements of the
same nodules by different readers, thus highlighting the inaccuracy of the manual
method. Figure 5 shows the result of our reconstruction pipeline on one patient;
instead of guessing the relationship between axial and sagittal scan planes, we
provide a linked representation and a 3D rendering, using the 3D pose of the
ultrasound clip frames from both sweeps as derived by our method. This alone
may improve the ellipsoid method by choosing better frames to draw consistent
length measurements from; in addition, an automatic segmentation method can
be directly translated to 3D volume measurements. On this patient, the shown
lesion was measured by three readers to be 0.85 mL, 1.06 mL, 0.76 mL, respec-
tively. The 3D segmentation results based on our reconstruction were 0.99 mL
and 0.91 mL for transversal and sagittal, respectively.

4 Conclusion

We have presented a pipeline to create accurate three-dimensional representa-
tions of the human thyroid from overlapping 2D ultrasound clips acquired in
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transversal and sagittal directions. Deep learning-based reconstruction and seg-
mentation is performed individually on each sweep, then their information is
combined and redundancy in the overlapping data exploited to refine the 3D
reconstruction. Since neither specialized hardware or setup is required, this can
have beneficial implications for many clinical applications; we therefore propose
this concept as a general means to create a 3D representation from arbitrary
DICOM clips, even when using inexpensive point-of-care ultrasound probes.

While our results are preliminary due to the size of our validation set, we
believe they are sufficient proof to show that the presented approach is viable
in general. Pending completion of our ongoing patient study with suspicious
thyroid masses, it is straightforward to build a clinical software tool, which
shall also allow Deep Learning-based segmentation of nodules in addition to
the thyroid gland, as well as automated co-registration of repeated screening
acquisitions, based on the methods we have presented here. Further work would
be necessary to address forth- and back motion during the freehand acquisitions,
using for instance an auto-correlation approach (as used for gating in [7]) which
can remove duplicate content. On challenging clinical data, landmarks placed
interactively on anatomical structures of interest may be used to constrain the
joint co-registration & reconstruction, while at the same time increasing local
accuracy. Last but not least, we are also working on a non-linear deformation
model that is matching the skin surface of the two sweeps so that the varying
pressure exerted onto the patient’s neck during the scanning can be properly
compensated.
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