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Abstract. In this manuscript, a framework for the pre-clinical valida-
tion of LBM-EP, a fast cardiac electrophysiology model, is presented.
The overarching objective is to assess whether the model is able to pre-
dict ventricular tachycardia (VT) induction given the lead location and
the pacing frequency protocol. First, the random-walk algorithm is used
to interactively segment the heart ventricles from delayed-enhancement
magnetic resonance images (DE-MRI). Scar and border zone are delin-
eated using image thresholding. Then, a detailed anatomical model is
estimated, comprising fiber architecture and spatial distribution of ac-
tion potential duration. That information is rasterized to a Cartesian
grid, and the cardiac potentials are computed using a parallel imple-
mentation of LBM-EP. A preliminary evaluation of the framework was
performed on one swine data, for which four different pacing protocols
were tested. Each of the protocols were mimicked by computing seven
seconds of heart beat. Model predictions in terms of VT induction were
compared with what was observed in the animal. Moreover, our parallel
implementation on graphics processing units enabled a total computa-
tion time of about two minutes at an isotropic grid resolution of 0.8mm,
thus allowing, for the first time, interactive VT testing.

1 Introduction

Ventricular tachycardia (VT) and ventricular fibrillation are among the most
life-threatening cardiac events, causing the majority of the 200,000 yearly sud-
den deaths. When medication is not sufficient to control them, radio-frequency
ablation constitutes an efficient and cost-effective therapy. However, ablation in
the setting of healed myocardial infarction has only 58% initial success rate and
71% eventual success rate following repeated procedures [1]. Reasons for these
low numbers are: 1) the reentrant pathways to treat are complex and their orig-
ination point is challenging to map; 2) ablation is performed point-wise; and



3) registration errors between electrophysiological mapping and anatomy make
ablation planning and guidance inaccurate [4]. These limitations not only limit
the success of the procedure but also significantly prolong the duration of the
intervention and increase the risks of chamber perforation and bleeding. There
is therefore a need for new approaches to assist VT ablation therapy prior and
during the intervention to improve outcomes.

To tackle this challenge, computational models of cardiac electrophysiology
(EP) are being investigated. In [10, 11], preoperative magnetic resonance images
(MRI) were employed to generate a model of patient’s heart anatomy. Cardiac
electrophysiology was then computed using a phenomenological model of action
potential [7], with patient-specific parameters estimated from intraoperative en-
docardial mapping at sinus rhythm [10]. The authors then virtually stimulated
the myocardium close to the scar to induce VT. However, in both studies, the
results were not validated against clinical observations. In a recent pre-clinical
study [8], the authors investigated whether an isotropic EP model, with generic
parameters (i.e. non subject-specific), was able to predict VT induction. One
protocol and different lead positions were virtually tested on eight pigs, show-
ing promising predictions of VT induction compared to the observed inducibiliy.
However, that study did not tackle the question of whether the model was able
to predict induction if a specific lead location and protocol was given. Compre-
hensive validation on clinical setups is therefore still missing.

As a first step towards this aim, we propose a framework for the pre-clinical
validation of a fast EP model, LBM-EP [9] in terms of VT planning. In particular,
our approach enables to investigate whether LBM-EP can predict VT induction
for a specific pacing protocol and lead position. Combining advanced image
analysis methods and the LBM-EP model (Sec. 2), our approach allows the fast
and streamlined computation of EP for any pacing protocol, interactively. Sec. 3
reports the results of four different pacing protocols in one swine and compare the
predicted inducibility with what was observed in that animal. Sec. 4 concludes
the manuscript.

2 Material and Methods

2.1 Pre-Clinical Protocol

Animal Model One swine was used in this study. Under general anesthesia,
the midleft anterior descending coronary artery was occluded between the first
and second diagonal branch for 120 minutes using a 2.7Fr balloon angioplasty
catheter via a femoral artery, to create a myocardial infarction (MI). Sixteen
weeks after MI induction, the swine underwent in-vivo MRI and two days after
the MRI, an EP study was done to determine inducibility of sustained VT.

Electrophysiological Evaluation Detailed left ventricular (LV) mapping dur-
ing sinus rhythm was performed with a multi-electrode 2-mm-tip catheter (6Fr)
with 2, 6, 2-mm inter-electrode spacing (Dynamic XT, Bard Electrophysiology,
Lowell) to construct a 3D voltage map using an electro-anatomic mapping sys-
tem (NavX, St. Jude Medical). Peak-to-peak bipolar amplitudes were displayed



color coded and recorded, with electrograms ≤ 1.5mV defined as low voltage
electrograms. The programmed electrical stimulation protocol was conducted to
induce VT using a pacing catheter (6Fr) advanced to the right and then left
ventricular chambers through a femoral vein. The stimulation protocol consisted
of three decreasing extra-stimuli at two different drive cycle lengths.

MRI Protocol Imaging took place on a 3.0T system with a 32-channel cardiac
phased array (Achieva, Philips Medical Systems, Best, The Netherlands). Global
cardiac function was measured using 2D breath-hold balanced steady-state free
precession (1.25 × 1.25 × 5.0mm3). For visualization of the border zone and
scar, a custom 3D delayed contrast enhancement (DE-MRI) sequence (ECG-
gated, respiratory navigator gated, phase-sensitive inversion recovery spoiled
gradient echo [6]) with the following imaging parameters was used: 60 slices with
1.00x1.25x3.0 mm3 in-plane resolution reconstructed to 0.75 × 0.75 × 1.5mm3,
TR/TE 5.6/2.7ms, 18◦ flip angle, acquired ≈ 25-35 min post intravenous admin-
istration of 0.2mmol/kg Magnevist (Berlex/Schering AG, Berlin, Germany).

2.2 Model of Cardiac Anatomy

We then created the anatomical model from the DE-MRI. An interactive method
was employed based on the random-walk algorithm to segment the bi-ventricular
myocardium [5]. The resulting masks were fused to form a closed surface of the
biventricular myocardium (Fig. 1, left panel). The atria were not considered in
this study. Next, the myocardium domain was mapped onto a Cartesian grid
and represented as a level-set. Scar and border zone regions were segmented
by using image thresholding, and mapped to the Cartesian domain. To cope
with tissue anisotropy, a model of fiber architecture was calculated by following
a rule-based approach [9]. Below the basal plane, fiber elevation angle varied
linearly from the epicardium to the endocardium (from −60◦ to +60◦ for the
left ventricle (LV), from −80◦ to +80◦ for the right ventricle (RV)), which were
then geodesically extrapolated up to the valves (Fig. 1, right panel). Finally, a
model of the spatial heterogeneity of the action potential distribution (APD) was
used [2] by spatially varying the parameter τclose of the electrophysiology model
(see next section). Three types of cells were considered: endocardial (τcloseendo

),
mid-cell (τclosemid

) and epicardial (τcloseepi), with a slight base-to-apex gradient
(base APD was equal to 95% of apex APD, with linear variation throughout the
myocardium (Fig. 1, right panel)).

2.3 LBM-EP: Lattice-Boltzmann Model of Myocardium
Transmembrane Potentials

The LBM-EP method was used to compute cardiac EP in near real-time. LBM-
EP solves any mono-domain model by using a Lattice-Boltzmann method [9]. In
this work, the trans-membrane potential v(t) ∈ [−70mV, 30mV ] was calculated
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Fig. 1. Subject-specific anatomical model. Left : Heart segmentation (scar in red).
Right : Mesh visualization of the anatomical model estimated from the segmentation.

according to the Mitchell-Schaeffer model [7]:

∂v

∂t
= h(t)

v2(1− v)

τin
− v

τout
+ c∇ ·D∇v + Istim

dh

dt
=

{
(1− h)/τopen if v < vgate

−h/τclose otherwise

In the previous equations, h(t) is a gating variable that models the state of the ion
channels, c is the tissue diffusivity whose anisotropy is captured by the tensor D
and Istim is an additional current (for instance induced by the pacing catheter).
The parameters τ and vgate control the dynamics of the action potential.

The mono-domain equation was solved on a 7-connectivity Cartesian domain
(six edges and central position). For higher spatial accuracy, Neumann bound-
ary conditions were enforced by using a level-set representation of the heart
anatomy. Stimulation currents were applied through Dirichlet boundary condi-
tions at the position of the pacing lead. Seven different domains were identified
on the Cartesian grid: the left and right ventricular septum, used to pace the
heart to mimic the His bundle; the left and right endocardia, with fast electri-
cal diffusivity, cLV and cRV , to mimic the Purkinje network; the myocardium,
with slower diffusivity cMyo, the border zone (cbz) and the scar, which does not
conduct the electrical wave altogether.

We also computed the electrocardiogram resulting from the calculated elec-
trophysiology. The extra-cellular potentials were obtained according to an alge-
braic equation [3] and mapped to the torso using the boundary element method.
Finally, the algorithm was implemented on a graphics processing unit (GPU) for
maximal performance.



Fig. 2. Left : Computed depolarization times at sinus rhythm. The scar is highlighted
in yellow. Right : I-lead ECG resulting from the computed electrophysiology.

2.4 Virtual Pacing Protocol

Virtual pacing was performed interactively. The user first chose the protocol to
apply in terms of pacing interval. The 3D position of the pacing lead was then
placed interactively. Finally, cardiac electrophysiology was computed over the
entire pacing session.

3 Experiments and Results

3.1 Model Personalization

For all experiments, EP was computed on a 0.8×0.8×0.8mm3 grid. Tissue diffu-
sivity and action potential duration (APD) were manually adjusted to match the
measured QRS duration (QRSd = 116ms) and QT interval (QTd = 488ms).
Fig. 2 shows the computed depolarization time map and the resulting I-lead elec-
trocardiogram (ECG). After personalization, computed QRSd and QTd matched
the measurements: QRSdcomp. = 115ms and QTdcomp. = 450ms (cLV = cRV =
2500mm2/s, cMyo = 300mm2/s, τcloseendo

= 180ms, τclosemid
= 190ms and

τcloseepi = 140ms). τopen was globally increased to match trends reported in [10]
(τopen = 200ms). The nominal values τin = 0.3ms and τout = 6ms were used.
The diffusivity in the scar was set to 0mm2/s. Border zone diffusivity was as-
sumed to be half of the healthy tissue, cbz = 150mm2/s while τclose was increased
by 50ms to mimic the longer APD observed in the healing tissue [8].

3.2 Virtual Electrophysiological Evaluation

For all experiments, natural septal pacing occurred at t = 80ms, then ev-
ery 1180ms, the measured cycle length. The first S1 stimulus was applied at
t = 1000ms, followed by the subsequent stimulations according to the selected
protocol. In total, seven seconds of heart beats were computed. Four pacing
protocols were tested (see Fig. 3 for the positions of the lead):
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Fig. 3. Left : Position of the leads for the four VT pacing protocols tested in this study.

P1: RV endocardium pacing The lead was placed at the apex of the RV
endocardium. Eight stimuli (S1) every 400ms were applied, followed by the
S2 stimulus after 360ms, S3 after 320ms and S4 after 290ms.

P2: RV outflow tract pacing The lead was placed at the RV outflow tract.
The same stimulation protocol as for the RV endocardium apex was em-
ployed.

P3: LV endocardium pacing The lead was placed at the LV endocardium
apex, where no scar nor border zone was present. Eight times S1 stimuli
were applied every 450ms, then S2 after 310ms, S3 after 250ms and S4
after 230ms.

P4: LV outflow tract pacing The lead was placed at the LV outflow tract.
The same stimulation protocol as for the LV endocardium apex was em-
ployed.

Fig. 4, left panel reports the computed I-lead ECG traces for the four pacing
protocols. For all of them, sustained VT could not be induced. For P1, P2 and
P3, the model is in agreement with what was observed experimentally, where no
sustained VT could be obtained. For P4 however, three monomorphic VT cycles
could be induced in the animal, which eventually degenerated in ventricular
fibrillation. From the computed ECGs, one can see that S2, S3 and S4 stimuli
fall in some cases in the refractory period of the heart, thus not triggering heart
depolarization (S3 for P1, S4 for P2, P3 and P4). Experimentally, this was
not the case: all pacing lead to cardiac depolarization. This suggests further
personalization is needed, in particular regarding the parameters controlling the
APD restitution curve.

3.3 Computational Efficiency

On a standard desktop machine (Intel Xeon 8-core @ 2.4 GHz, 4GB RAM,
NVIDIA GeForce GTX 580), EP over 1 s was computed in 19.5 s, yielding ap-
proximatively 2 minutes of computation for a complete VT pacing protocol. To
the best of our knowledge, this is the first time interactive virtual VT study could
be performed at relatively high resolution. Further speed-up could be achieved



P1 P2

P3 P4

Fig. 4. Computed I-lead ECG for the four tested pacing protocols. None of them
induced sustained VT after the end of the stimulations. See text for details.

by using lower resolution, at the price of the accuracy (1 s required 3.8 s of com-
putation at 1.5mm resolution for instance) or by using a more powerful graphics
card, LBM-EP being highly scalable both in terms of computational node and
number of cores.

4 Discussion and Conclusion

This manuscript presented a framework for the animal validation of LBM-EP, a
fast computational model of cardiac electrophysiology, in terms of prediction of
VT induction and ablation. Our approach couples advanced image analytics for
patient-specific anatomical modeling with a GPU-implementation of LBM-EP
and a model of ECG. Two minutes are needed to compute 7s of heart beat,
which is enough to detect if VT can be induced or not, compared to the 14
hours needed in [8]. Our framework thus enables, for the first time to the best of
our knowledge, interactive virtual electrophysiological evaluations. A preliminary
evaluation against four pacing protocols in one swine suggested promising results.
However, further personalization is required for improved predictions. The next
steps consist in comprehensive and quantitative evaluation against ECG signals
and invasive endocardial mapping, along with a sensitivity analysis of the model
predictions with respect to scar and border zone segmentation accuracy, as well
as lead position and S1 starting time.
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