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Abstract

Diagnosis and treatment of dilated cardiomyopathy (DCM) is challenging
due to a large variety of causes and disease stages. Computational models of
cardiac electrophysiology (EP) can be used to improve the assessment and
prognosis of DCM, plan therapies and predict their outcome, but require per-
sonalization. In this work, we present a data-driven approach to estimate the
electrical diffusivity parameter of an EP model from standard 12-lead elec-
trocardiograms (ECG). An efficient forward model based on a mono-domain,
phenomenological Lattice-Boltzmann model of cardiac EP, and a boundary
element-based mapping of potentials to the body surface is employed. The
electrical diffusivity of myocardium, left ventricle and right ventricle endo-
cardium is then estimated using polynomial regression which takes as input
the QRS duration and electrical axis. After validating the forward model,
we computed 9,500 EP simulations on 19 different DCM patients in just un-
der three seconds each to learn the regression model. Using this database,
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we quantify the intrinsic uncertainty of electrical diffusion for given ECG
features and show in a leave-one-patient-out cross-validation that the regres-
sion method is able to predict myocardium diffusion within the uncertainty
range. Finally, our approach is tested on the 19 cases using their clinical
ECG. 84% of them could be personalized using our method, yielding mean
prediction errors of 18.7 ms for the QRS duration and 6.5◦ for the electrical
axis, both values being within clinical acceptability. By providing an estimate
of diffusion parameters from readily available clinical data, our data-driven
approach could therefore constitute a first calibration step toward a more
complete personalization of cardiac EP.

Keywords: Cardiac Electrophysiology, Statistical Learning,
Lattice-Boltzmann Method, Uncertainty Quantification, Electrocardiogram

1. Introduction

1.1. Clinical Rationale

With around 17.3 million deaths per year (Mendis et al., 2011), the global
burden of cardiovascular diseases remains high and causes a significant social
and economic impact. According to recent estimates, about 2% of adults in
Europe (McMurray et al., 2012) and 2.4% of adults in the US (Roger et al.,
2012) suffer from heart failure alone, with the prevalence rising to more than
10% among persons 70 years of age or older. One of the most common causes
of heart failure is dilated cardiomyopathy (DCM), a condition with weakened
and enlarged ventricles and atria, leading to an ineffective pump function that
can directly and indirectly affect the lungs, liver, and other organ systems.
The prevalence of DCM amounts to around 0.9% of adults in the US (Ferri,
2013), and the disease is the leading indication for heart transplantation in
younger adults. Due to a large variety of individual causes and disease stages,
diagnosis and treatment of DCM remains an open challenge.

Cardiac arrhythmia, i.e. irregular electrical activity of the heart, occurs
frequently in heart failure patients, particularly in those with DCM (McMur-
ray et al., 2012). But also beyond DCM, the prevalence of cardiac rhythm
disorders has increased significantly in the last decade following an improve-
ment in patient care (Marcus et al., 2013). Depending on the kind of rhythm
disorder, which is commonly diagnosed using electrocardiography (ECG), the
treatment of arrhythmia includes drug therapies, radio frequency ablation
and the implantation of artificial pacemakers and cardioverter-defibrillators.
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Unfortunately, around 30% of patients are non-responders to these invasive
treatments, and in up to 50% of the cases, recurrences are identified (Auric-
chio et al., 2011).

As a result, tools for a more predictive assessment of cardiac electrophys-
iology (EP) are needed. Computational assistance is not only required for
a superior patient management and diagnosis but could also benefit therapy
planning, outcome prediction and intervention guidance. While improved
risk stratification could help avoiding surgeries without sufficient prospects,
the potential of optimizing invasive procedures, for instance by choosing op-
timal electrode locations, can potentially lead to an increased success rate
and fewer non-responders. For this purpose, computational models can be
employed to study and evaluate patient-specific electrophysiology in-silico.

1.2. Technical Background: Computational Models of Cardiac Electrophysi-
ology

1.2.1. Models of Cardiac Action Potential

A wide range of computational models of cardiac EP with different bio-
logical scales and theoretical complexity has been proposed since the seminal
work of Hodgkin and Huxley (1952). Especially in the last decade, the com-
munity has witnessed tremendous progress in modeling efforts (Clayton et al.,
2011). Depending on their level of detail, EP models can be classified into
three groups: Biophysical, phenomenological and Eikonal models.

Biophysical cellular models capture cardiac electrophysiology directly at
cell level by describing biological phenomena responsible for myocyte de-
polarization and repolarization. More precisely, ionic interactions within the
cell and across the cell membrane (ion channels) are considered (Noble, 1962;
Luo and Rudy, 1991; Noble et al., 1998; Ten Tusscher et al., 2004) and lead
to complex equations, commonly one per molecular process. Although it has
been shown that biophysical models can reproduce different electrophysiolog-
ical behaviors such as action potential restitution and conduction velocity,
the large amount of parameters limits their usage in clinical applications due
to the difficulty of personalization.

Cell models are then integrated at the organ level using using reaction-
diffusion partial differential equations (PDEs). Two major categories can
be distinguished. While mono-domain approaches neglect interstitial effects
and consider the myocardium as single excitable tissue (Coudière and Pierre,
2006), bi-domain strategies superimpose intra- and extra-cellular domains
and take different electrical properties into account (Bourgault et al., 2009).
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In the absence of external stimuli, mono-domain models have been shown
to produce almost identical results as their bi-domain counterparts (Potse
et al., 2006).

Phenomonological models, historically the first models to be proposed by
FitzHugh (1961), work at a more macroscopic level. Derived from experi-
mental observations, the action potential is described by a small number of
parameters with direct influence on its shape, disregarding the underlying
ionic interactions (Aliev and Panfilov, 1996; Mitchell and Schaeffer, 2003).
Having only few parameters with direct effect on measurable output facil-
itates model personalization, and the lower computational cost when com-
pared to biophysical models offers a reasonable compromise between model-
ing capacity and performance. The distinction between mono-domain organ
level integration schemes such as in Aliev and Panfilov (1996); Fenton and
Karma (1998); Mitchell and Schaeffer (2003) and bi-domain approaches such
as in Clayton and Panfilov (2008) can be applied to phenomonological mod-
els, too. Recent numerical advances based on Lattice-Boltzmann methods
(Rapaka et al., 2012) or Finite Element methods (Talbot et al., 2013) exploit
the massively parallel architecture of modern graphics processing units, and
allow near real-time performance and user interaction.

Eikonal models (Franzone et al., 1990; Keener and Sneyd, 1998; Serme-
sant et al., 2007) solely concentrate on the propagation of the electrical wave
to stimulate muscle activation. The formation as well as the shape of the
action potential in myocytes is neglected. Governed only by the anisotropic
speed of wave propagation, the local time of wave arrival throughout the
myocardium, can be computed very efficiently using fast marching methods
(Sethian, 1999; Wallman et al., 2012). While it has become possible to sim-
ulate wave reentry phenomena with Eikonal models (Pernod et al., 2011),
capturing other complex pathological conditions such as arrhythmias, fibril-
lations or tachycardia is more challenging.

1.2.2. Model Personalization

In order to apply the aforementioned EP models in clinical settings,
patient-specific physiology has to be captured by personalized model param-
eters. Finding those is challenging in the clinical workflow as the estimation
from patient data implies solving an inverse problem. In this context, the
forward model denotes the computation of the electrical wave propagation
from the heart to the point of measurement (catheter electrode, body sur-
face), and the inverse model the back-projection of measurement data onto
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the heart and the inference of model parameters (Gulrajani, 1998).
Inverse problem techniques are computationally demanding because they

comprise an optimization problem and therefore require a large quantity of
forward model runs (Modre et al., 2002; Chinchapatnam et al., 2008; Dössel
et al., 2011). Alternatively, data-driven algorithms have been investigated to
tackle model personalization. As a first step, Jiang et al. (2011) apply statisti-
cal learning to map body surface potentials onto the epicardium. Konukoglu
et al. (2011) derive a surrogate EP model based on polynomial chaos theory
to personalize an Eikonal model. Wallman et al. (2013) infer tissue con-
duction properties using Bayesian inference to be patient-specific. Linking
activation patterns with the resulting cardiac motion that can be observed in
clinical images, Prakosa et al. (2013) train a machine-learning algorithm to
estimate depolarization times for cardiac segments from regional kinematic
descriptors. The advantage of these statistical methods is the possibility to
quantify uncertainty and to optimize the location of measurements. Machine
learning techniques could therefore constitute efficient strategies for model
personalization. However, a sufficient sampling of the parameter space is
needed for these approaches to yield meaningful results. In this study, we
aim to achieve an estimation of model parameters only from sparse electro-
cardiogram data.

1.2.3. Models of Electrocardiogram and Torso Potential

From the perspective of data acquisition, endocardial mapping (Serme-
sant et al., 2009; Relan et al., 2011) facilitates the parameter estimation as it
provides dense potential measurements but it is pre-operatively often avoided
as it is invasive. A non-invasive alternative is to back-project electrical poten-
tials measured at the body surface in the form of electrocardiograms (ECG),
to the epicardium. Considering the ill-posedness of the parameter estima-
tion, the use of body surface mapping (BSM) has been investigated (Dössel
et al., 2011; Wang et al., 2011). In contrast to standard 12-lead ECG, BSM
is however not yet widely available as diagnostic modality.

If body surface ECG data is used for parameter estimation, regardless
of the number of traces, a model of electrical potentials at the surface of
the torso is needed. In terms of the forward model, current approaches
employ both Finite Element (FEM) and Boundary Element (BEM) methods.
While the former intrinsically allow varying conductivity within and across
different organs (Li et al., 2007; Geneser et al., 2008; Liu et al., 2012), the
latter either assume constant isotropic conductivity throughout the entire
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torso (Barr et al., 1977; Shou et al., 2009) or integrate additional surface
meshes delineating neighboring organs (Potse et al., 2009). Furthermore, in
a numerical study by Boulakia et al. (2010), decoupling the computation
of cardiac electrophysiology and body surface potentials has been shown to
preserve the shape of ECG features well.

1.3. Aim of the Study

The personalization of computational EP models, i.e. the estimation
of patient-specific model parameters, remains challenging because of lack
of dense data and the ill-posedness of the inverse problem. We therefore
propose in this work to estimate EP model parameters from standard 12-lead
electrocardiograms (ECG) only using a data-driven method that provides
insight into estimation uncertainty. In particular, our method is based on
statistical learning and employs polynomial regression to map ECG features
to model parameters, instead of finding a solution of the inverse problem
numerically. The key contributions of this work are:

i A fast forward model of cardiac electrophysiology and electrocardiogram
based on a Lattice-Boltzmann formulation and the boundary element
method.

ii A novel data-driven approach to automatically and efficiently estimate
heart electrical diffusivity from 12-lead ECG features.

iii The quantification of the intrinsic uncertainty of the inverse problem,
i.e. the uncertainty of myocardial diffusion given a set of ECG features,
through statistical learning.

iv The evaluation of our estimation framework on 19 DCM cases.

This study extends our previous work (Zettinig et al., 2013a) as follows:

i In a detailed quantitative evaluation and convergence analysis of the em-
ployed forward model and its parts, we show the influence of various
model parameters on the ECG features.

ii Results of benchmark experiments allow insights on the computational
performance of our approach.

iii A comparison with other statistical learning techniques justifies the choice
of multivariate polynomial regression.

iv For a quantitative evaluation of the diffusion estimation method, we use
a significantly more extensive dataset of synthetic and real case data,
allowing to capture a bigger variety of individual physiologies.
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Figure 1: Steps of proposed forward model of ECG.

2. Methods

This section presents the details of the proposed data-driven EP pa-
rameter estimation framework. Section 2.1 describes how a patient-specific
anatomical model is derived from clinical images. In Sec. 2.2, a fast forward
model of cardiac electrophysiology, body surface potentials and electrocar-
diogram, as shown in Fig. 1, is detailed. Thereafter, Sec. 2.3 describes the
proposed data-driven diffusion estimation procedure. Implementation details
are reported in Sec. 2.4.

2.1. Patient-Specific Model of Cardiac Anatomy

The complete workflow of anatomical model generation is depicted in
Fig. 2. First, we employ the framework presented in Zheng et al. (2008)
to automatically estimate, under expert guidance, heart morphology from
cine magnetic resonance images (MRI). For anatomical structure localiza-
tion, the Marginal Space Learning (MSL) framework intuitively finds control
points representing important landmarks such as valves and ventricular sep-
tum cusps using Haar- and steerable features. Then, a point-distribution
model of biventricular geometry is mapped to these control points and suc-
cessively deformed according to learning-based boundary delineation through
a Probabilistic Boosting Tree (PBT). Using a manifold-based motion model,
the resulting surface meshes are tracked over the cardiac sequence such that
point correspondences are maintained. To form a closed surface mesh of the
biventricular myocardium, the segmented triangulations of the epicardium
and endocardia are fused together. The myocardium at end-diastole is fi-
nally mapped onto a Cartesian grid with isotropic spacing and represented
as a level-set.
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Based on the original segmentation meshes and point-to-point distances,
we consider five domains in our anatomical model: The left and right ven-
tricular septum, which mimics the His bundle and serve as initialization zone
of the electrophysiological wave, the left and right endocardia mimicking the
Purkinje system of fast electrical diffusivity, and finally the myocardium with
slower diffusivity.

cMyo

Segmentation EP Domains Fiber Architecture

Anatomical Model
cRV

cLV

Torso Geometry

Figure 2: Workflow of anatomical model generation. See text for details.

As diffusion tensor imaging (DTI) is not yet clinically available (Wu et al.,
2009), the rule-based strategy described by Bayer et al. (2012) is extended
as proposed by Zettinig et al. (2013b) to compute a generic model of my-
ocardium fiber architecture. Below the basal plane, identified automatically
using the point correspondences of the initial triangulations, the fiber eleva-
tion angle αf is assigned to all grid nodes. Defined as the angle with respect
to the short axis, αf varies linearly across the myocardium from -70◦ on the
epicardium to +70◦ on the endocardium. Around the valves, fiber directions
are fixed (longitudinal around the aortic valve, tangential otherwise), and
between the basal plane and the valves finally interpolated first following
the myocardium surface, then transmurally (Moireau, 2008; Zettinig et al.,
2013b). All interpolations throughout the myocardium rely on geodesic dis-
tances and the Log-Euclidean framework (Arsigny et al., 2006). Figure 2
illustrates the myocardium fiber model and the electrophysiology zones.

A body surface triangulation is obtained using a manual, two-step pro-
cedure. First, the contours of the torso is outlined in coronal, sagittal and
transverse slices of the survey MR image, and visualized together with the
heart model. Second, a manual affine registration of an atlas of torso geome-
try, obtained from a full-body CT dataset of a subject with healthy body mass
index, to the contours is performed as illustrated in Fig. 3.

8



a b c

Figure 3: a) Sagittal image slice and manually outlined contour. b) Atlas of torso geometry
before registration and c) after manual registration to body contours in coronal, sagittal
and transverse image slices.

2.2. Fast Forward Model of Cardiac Electrocardiogram

Our forward model consists of three sequential steps described in the fol-
lowing sections (Fig. 1). First, we compute cardiac electrophysiology using
the LBM-EP algorithm proposed by Rapaka et al. (2012). Second, we esti-
mate extracellular potentials at the epicardium using an elliptic formulation
and project them to the torso by means of a Boundary Element Method
technique. Ultimately, ECG traces are computed and ECG features auto-
matically calculated.

2.2.1. LBM-EP: Lattice-Boltzmann Model of Myocardium Transmembrane
Potentials

Cardiac EP is computed according to the phenomenological mono-domain
model proposed by Mitchell and Schaeffer (2003), which describes the nor-
malized transmembrane potential (TMP) v(t) ∈ [0, 1] throughout the my-
ocardium with the following equation:

∂v

∂t
= Jin + Jout + Jstim + c∇ ·D∇v (1)

Electrical diffusion is formulated anisotropically with the diffusion coef-
ficient c and the anisotropy ratio ρ, defining the anisotropic diffusion tensor
D = ρI + (1 − ρ)ffᵀ with f denoting the fiber direction. The EP zones as
defined in Sec. 2.1 are assigned three different diffusion coefficients: cLV and
cRV for the left and right endocardium, respectively (fast conducting Purkinje
network), and cMyo for the myocardium.

The model simplifies all ion channel interactions to only an inward current
Jin and an outward current Jout (Eqs. 2-3). The former captures the fast
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Figure 4: Four stages of the myocyte action potential and the relating parameters of the
Mitchell-Schaeffer model.

acting ionic currents in the myocyte and depends on the gating variable h(t)
that models the state of the ion channels.

Jin =
h(t)v2(1− v)

τin
, with

dh

dt
=

{
1−h
τopen

, if v < vgate
−h
τclose

, otherwise
(2)

Jout =
−v
τout

(3)

The time constants τin � τout � τopen, τclose are directly related to the
shape and duration of the action potential, allowing for personalization from
clinical data. As illustrated in Fig. 4, τclose relates to the action potential du-
ration (APD), for which a linear transmural gradient as described by Glukhov
et al. (2010) is employed. The remaining model parameters, including the
change-over voltage vgate, are obtained from literature (Mitchell and Schaef-
fer, 2003) and kept constant throughout the myocardium. Table 1 lists all
fixed model parameters.

The complex PDE (Eq. 1) is solved using the LBM-EP algorithm, an
efficient Lattice-Boltzmann method, proposed by Rapaka et al. (2012). It
should be noted, though, that the LBM-EP algorithm is generic and would
allow any mono-domain cell model to be solved. In short, the method main-
tains a vector of distribution functions f(x) = {fi(x)}i=1...7, where fi(x)
represents the probability of finding a particle traveling along the edge ei of
node x. The seven indices correspond to the central position and the six
principal connections on the Cartesian grid, respectively. Its computation is
decomposed into two consecutive steps, namely the collision phase, yielding
intermediate post-collision states f ∗

i and the streaming phase, propagating
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Table 1: Parameters used for the Mitchell-Schaeffer model (Mitchell and Schaeffer, 2003;
Glukhov et al., 2010). Note that vgate is dimensionless because v(t) is normalized to [0, 1].

Parameter
vgate 0.13
τin 0.3 ms
τout 6 ms
τopen 120 ms
τcloseendo 130 ms
τcloseepi 90 ms

the distribution functions along their corresponding edges:

f ∗
i = fi − Aij (fj − ωjv) + δt ωi(Jin + Jout + Jstim), (4)

fi(x + ei, t+ δt) = f ∗
i (x, t) (5)

The collision matrix A = (Aij) relaxes the distribution function fi toward
the local value of the potential v and is defined such that anisotropic fiber-
related diffusion is taken into account. The weighting factors ωi are utilized
to emphasize the center position. We refer the reader to Rapaka et al. (2012)
for further details. Using a forward Euler scheme, the gating variable h(t) can
easily be updated at every node. Eventually, the transmembrane potential
v(x, t) is defined as the sum of the distribution functions: v(x, t) =

∑
i fi(x, t)

and transferred to the range [−70 mV, 30 mV] using the scaling factors given
in Mitchell and Schaeffer (2003). The depolarization times Td(x) are obtained
as the points in time when the potential first exceeds the change-over voltage:

Td(x) = arg min
t
{v(x, t) ≥ vgate} (6)

2.2.2. Boundary Element Model of Torso Potentials

For the propagation of electrical potentials through the body, it is neces-
sary to estimate cardiac extracellular potentials φe(t) from the TMP v(t). To
that end, we employ the elliptic formulation proposed by Chhay et al. (2012),
which assumes a constant diffusion anisotropy ratio λ = ci(x)/ce(x), with ci
and ce denoting the intra- and extracellular diffusion coefficients respectively.
Within the entire myocardium domain Ω, the extracellular potential φe is ex-
pressed as:

φe(x, t) =
λ

1 + λ

1

|Ω|

∫
Ω

(v(y, t)− v(x, t))dy (7)
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Figure 5: a) For any given observation point in the thoracic domain, both torso and heart
surfaces need to be integrated as defined in Eq. 8. b) After discretization, geometric
coefficients of the P matrices in Eq. 10 require the evaluation of solid angles.

Next, we utilize a boundary element method (BEM) as described in Barr
et al. (1977) and refined in Shou et al. (2009) to project the potentials φe from
the epicardium to the torso. Before, tri-linear interpolation is used to map
φe from the Cartesian grid back to the epicardial surface mesh. Following
Green’s second identity, the potential φ(x) at any observation point x of the
thoracic domain is given as:

φ(x) =
1

4π

∫
SB

φB
r · n
||r||3

dSB +
1

4π

∫
SH

[
φe

r · n
||r||3

+
∇φe · n
||r||

]
dSH (8)

Hereby, subscripts B denote the body surface and the potentials there-
upon, SH the epicardial heart surface. The surface normals n face outward
of the domain under consideration (i.e. outward at the torso and inward at
the epicardium). r is defined as the vector from x to the point of integration
as illustrated in Fig. 5a. Note that Eq. 8 assumes that ∇φB = 0.

After placing the observation point x only onto the two surfaces, dis-
cretization in triangular meshes, and reformulation in matrix form, a system
of linear equations can be constructed (Barr et al., 1977):

PBB φB + PBH φe + GBH ΓH = 0 (9)

PHB φB + PHH φe + GHH ΓH = 0 (10)

Obtaining the geometric coefficients of matrices P and G requires the
evaluation of two integrals. The integral

∫
(r · n)/||r||3dS in fact describes

the solid angle dΩ subtended at any observation point by a surface element
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dS (see Fig. 5b), and can be efficiently computed with the following closed
form formula (Van Oosterom and Strackee, 1983):

tan
dΩ

2
=

a1 · (a2 × a3)∏3
i=1 ||ai||+ ||a1||(a2 · a3) + ||a2||(a3 · a1) + ||a3||(a1 · a2)

(11)

Hereby, vectors ai denote the vectors from the observation point to the three
vertices of the triangulated surface element dS. The surface-over-distance in-
tegral

∫
dS/r, on the other hand, is solved using Gaussian quadrature. Can-

celing out the matrix ΓH , which contains the gradients∇φe, a precomputable
transfer matrix that entirely depends on the geometry can be defined:

ZBH =
(
PBB −GBHG−1

HHPHB

)−1 (
GBHG−1

HHPHH − PBH

)
(12)

This allows to express body surface potentials by means of a simple matrix
multiplication: φB = ZBH φe.

2.2.3. Electrocardiogram Calculation

From the potentials φB at the torso, the standard Einthoven, Goldberger
and Wilson leads (Chung, 1989) are computed. For the sake of simplicity,
electrode positions were chosen to coincide with manually selected torso mesh
vertex positions.

In this work, we focus on two meaningful ECG features. On the one hand,
the duration of the QRS complex ∆QRS is dependent on the total time the
electrical wave requires to propagate throughout the entire myocardium. On
the other hand, the mean electrical axis angle α is suited to detect imbalances
between left and right ventricular wave conduction. From the computed ECG
signals, ∆QRS and α are derived as follows:

• For numerical stability, the QRS complex is detected using the depo-
larization times computed by LBM-EP. Assuming one full heart cycle
is computed: ∆QRS = maxx Td(x)−minx Td(x).

• The electrical axis is computed using the Einthoven leads I and II:
α = arctan((2hII − hI)/(

√
3hI)), where the hi’s are the sum of the

automatically detected R and S peak amplitudes (minimum and max-
imum) in the respective leads during the QRS complex.
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Figure 6: Schematic diagram of the data-driven backward ECG model.

2.3. Data-Driven Estimation of Myocardium EP Diffusion

The forward model as described above can be seen as a dynamic system
y = f(θ) with the diffusion coefficients θ = (cMyo, cLV , cRV ) as free parame-
ters and the ECG features y = (∆QRS, α) as outputs of the system. Estimat-
ing diffusion parameters from ECG features therefore consists in evaluating
a function g(y) that approximates the inverse problem θ = g(y) ≈ f−1(y),
as shown in Fig. 6. In contrast to solving the inverse problem numerically
using an optimization strategy such as Dössel et al. (2011), we propose to
learn the inverse function instead.

Table 2: Diffusion coefficient configurations for normalization forward runs.

Configuration Diffusion coefficients (mm2/s)
cMyo cLV cRV

F1 100 4,900 4,900
F2 100 100 4,900
F3 100 4,900 100

The ECG features ∆QRS and α vary significantly within the population,
even in healthy subjects, due to a variety of factors including heart mor-
phology and position. To cope with this geometrical variety, our algorithm
scouts the parameter space using three forward model runs with the pre-
defined diffusion coefficients listed in Tab. 2. The resulting ECG features
are then used for an effective normalization scheme, intrinsically considering
geometrical features of a particular patient:

• Configuration F1 contains nominal EP diffusion parameters and thus
entails a normal wave propagation. Provided the same diffusivity, the
electrical wave will take longer to propagate through the entire my-
ocardium in larger hearts, which is why we use ∆QRSF1

to normalize

the QRS duration: ∆QRS = ∆QRS/∆QRSF1
.
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• The other two configurations contain extremely low LV and RV diffu-
sivity (LBBB-like scenario: F2; RBBB-like scenario: F3). The obtained
electrical axis parameters αF2 and αF3 scout the patient-specific space
of axis deviation, because we assume that the vast majority of forward
model runs with arbitrary physiological diffusion coefficients will yield
an electrical axis between them: αF2 ≤ α ≤ αF3 . Therefore, we perform
normalization as follows: α = (α− αF2)/(αF3 − αF2).

Finally, multivariate polynomial regression of degree N is employed to
learn the model θ = g(∆QRS, α). One regression function of the form

g(∆QRS, α) =
N∑
i=0

N∑
j=0

βi,j
(
∆QRS

)i
(α)j + ε (13)

is learned for each diffusivity parameter independently, g = (gMyo, gLV , gRV ).
During training, the regression coefficients βi,j are found using QR decom-
position such that the data is explained with minimal error ε. Note that our
normalization scheme does not lead to the same numerical ranges of ∆QRS

and α. The purpose of the normalization is only to compensate for inter-
patient variability; the regression framework will cope with scaling of the in-
put values itself. During testing, the diffusivity parameters are estimated for
unseen data using measured and normalized ECG features: ˆcMyo

ˆcLV
ˆcRV

 =

gMyo

gLV
gRV

(∆QRS

α

)
(14)

2.4. Implementation

The strictly local stream-and-collide rules of the LBM-EP algorithm are
inherently node-wise and can be implemented very efficiently in a single ker-
nel on a GPU architecture. We use NVIDIA CUDA1, version 5.5, as our
development environment. As shown by Georgescu et al. (2013), the sim-
ulation of transmembrane and extracellular potentials for a complete heart
cycle on a Cartesian grid with an isotropic resolution of 1.5 mm only requires
≈ 3 seconds on an NVIDIA GeForce GTX 580 graphics card. The boundary

1Compute Unified Device Architecture, http://developer.nvidia.com/

cuda-toolkit
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element solver relies on the C++ Eigen library (Guennebaud et al., 2010).
Training of and prediction with the regression model was performed using
the MATLAB and Statistics Toolbox Release 2013b (MathWorks, Inc.)

3. Experiments and Results

Before evaluating the method, clinical acceptance criteria were defined.
According to Surawicz et al. (2009), the normal QRS duration of adult males
was between 74 and 114 ms (average 95 ms), and diagnosis of RBBB or
LBBB is defined by QRS durations exceeding a certain, age-dependent thresh-
old. Therefore, we assume predictions of QRS durations to be successful if
within 20 ms. For the electrical axis, which is dependent on age and body
habitus, success ranges are more difficult to define. In adults, a normal axis
is considered to be within −30◦ and 90◦, left-axis deviation below −30◦, and
right axis deviation beyond 90◦. In clinical routine, a rough rule-based di-
agnosis scheme is often applied, e.g. left axis deviation is present if lead I
is positive and aVF is negative. Thus, prediction of the electrical axis was
assumed to be successful if within 30◦.

3.1. Evaluation of the Proposed Forward Model

A quantitative evaluation of the proposed forward model was carried out
to understand model behavior but also identify the optimal numerical pa-
rameters. For an extensive analysis of the LBM-EP solver, the reader is
referred to Rapaka et al. (2012). The following sections therefore focus on
the mapping of cardiac potentials on the body surface and on the impact of
EP parameters on the computed ECG.

3.1.1. Quantitative Evaluation and Convergence Analysis of Torso Mapping

For the evaluation of the boundary element mapping from the epicardium
to the torso, we chose a setup where an analytical solution to Eq. 8 exists.
Both epicardium and torso were assumed to be concentric spheres, with radii
rH for the heart sphere and rB for the body sphere. If not stated otherwise,
Gaussian quadrature of order 37 was used. Homogeneous material between
the two surfaces was also assumed. Using a spherical coordinate system with
θ as the polar angle to the Cartesian z-direction and ϕ as the azimuth angle
in the x-y-plane (Fig. 7a), we defined the extracellular potentials on the
heart surface: φe(θ, ϕ) = cos(θ) mV. Then, the potentials on the body φB
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Figure 7: a) Definition of spherical coordinate system. b) Heart sphere (green) and body
sphere (semi-transparent) with mapped potentials φB .
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Fig. 7b illustrates the mapped potentials on the body sphere. In the
reported experiments, rH = 100 mm to roughly represent the human heart.
Figure 8a reports computed and analytical body potentials throughout a
body sphere with rB = 300 mm. Mapping to different body spheres (see
Tab. 3 for mesh resolution details) showed that the algorithm was able to
correctly compute the potentials at various distances (Fig. 8b). Absolute
errors were on average 4.1 ·10−5±1.4 ·10−4 mV (mean ± standard deviation),
far below the clinical acceptance threshold.

Table 3: Body spheres used for torso mapping evaluation. See text for details.

Radius rB (mm) Number of Vertices Avg. Edge Length l̄ (mm)
150 3,482 10.5
300 3,482 21.0
400 3,482 28.0
600 3,482 42.0

A convergence analysis with respect to the mesh resolution (Fig. 8c) in-
dicated that with around 1,500 mesh vertices (average edge length 31.7 mm
for rB = 300 mm) the ratio between BEM-based and analytical solutions
is 99.70%, which relates to an absolute error of on average 9.3 · 10−4 mV
and is below the sensitivity of ECG sensors. For subsequent experiments,
we therefore choose a similar resolution of 30 to 35 mm for the torso mesh.
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Similarly, the relative error also converged with increasing order of Gaussian
quadrature as expected (Fig. 8d, experiments conducted with highest resolu-
tion mesh). Yet, low orders already reached a high degree of precision. The
following experiments were therefore carried out with an order of 6, which
showed to be a good compromise between accuracy and runtime performance
(more than 6× as fast as highest order under consideration).

a) Body sphere with rB = 300mm b) φB at pole for various spheres

c) Convergence with mesh resolution d) Convergence with order of quadrature

Figure 8: Evaluation of BEM torso mapping. a) Potentials throughout a body sphere with
rB = 300 mm and b) potentials at the pole (θ = 0, location of maximum error) for various
body spheres (Tab. 3) matched the analytical solution. c) Ratio between BEM-based and
analytical solution for various mesh resolutions and average edge lengths l̄, d) and for
various orders of Gaussian quadrature, showing that the method converges rapidly with
increasing mesh resolution and order of quadrature.

3.1.2. Parameter Evaluation of Complete Forward Model

Understanding the input parameters and output feature space of a given
model is crucial before applying machine learning techniques and performing
predictions. Therefore, we evaluated the influence of the most important
parameters of our forward model on the ECG features under consideration.
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On a representative patient case, the dependence of QRS duration ∆QRS and
electrical axis α on diffusivity c, action potential duration (APD; governed by
τclose) and fiber elevation angle ∠f was studied. In the following experiments,
each of these parameters was varied, while the other parameters were fixed
to their nominal value as given in Tab. 1-2.

a) Varying myocardium diffusion cMyo, fixed LV/RV diffusion, cLV = cRV = 4900mm2/s

b) Varying LV/RV diffusion (cLV + cRV = 5000mm2/s), cMyo = 100mm2/s

Figure 9: Influence of diffusivity coefficients on ECG features. a) QRS duration was
linearly dependent on myocardium diffusion when LV and RV diffusion were fixed. Elec-
trical axis varied little except for very low myocardium diffusion. b) Electrical axis was
almost linearly dependent on LV/RV diffusion when myocardium diffusion was fixed. QRS
duration varied little except for low LV or RV diffusion (< 1, 500 mm2s, borders of plot).

First, the forward model was run with myocardium diffusion cMyo ranging
from 100 to 1, 000 mm2/s, LV and RV diffusivity were fixed. As illustrated
in Fig. 9a, and as expected, the QRS duration showed linear dependence on
cMyo. After an initial drop, the electrical axis stabilized when cMyo > 400
mm2/s. In total, the range of α in this experiment accounted for 92.9◦.
This behavior was not surprising, because the electrical axis was entirely
governed by LV and RV endocardium diffusion at very low cMyo values. As
cMyo increased, the effect of the Purkinje model was complemented by the
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fast myocardial diffusivity and the electrical axis value depended mostly on
the geometrical configuration of the heart, i.e. its shape and relative position
in the torso.

cMyo was then fixed while the endocardial diffusion (cLV , cRV ) was varied
between 100 and 4, 900 mm2/s with the constraint cLV +cRV = 5, 000 mm2/s.
As illustrated in Fig 9b, an almost linear dependence of the electrical axis on
endocardial diffusion was observed. This was also expected, as diffusion dif-
ferences in the Purkinje fibers intuitively change the depolarization pattern.
When cLV and cRV were similar (|cLV − cRV | < 1, 000 mm2/s), the depolar-
ization was controlled by the Purkinje system, and a small range of 8.6 ms
was observed for the QRS duration. Either cLV or cRV approaching a bundle
branch block scenario and thus becoming closer to myocardial diffusion, the
QRS duration increased. The total range of ∆QRS was found to be 35.8 ms.

a) Comparision of linear gradient model and reference M-cell model

b) Evaluation of base-to-apex variability in action potential duration

Figure 10: Influence of action potential duration (τclose) on ECG features. a) The dif-
ference between the used linear gradient model and an M-cell model is negligible; the
transmural ratio does not seem to significantly influence QRS duration and electrical axis.
b) A downward gradient (base to apex) only causes slight variation in ECG features,
showing that regional differences in τclose cause low variation in ECG features. See text
for details.
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Next, the influence of different spatial distributions of τclose parameters,
which control action potential duration, was investigated. The employed lin-
ear transmural gradient of action potential duration (Glukhov et al., 2010)
was compared to a model with M-cells as described by Wilson et al. (2011).
Hereby, we assumed M-cells to be located in the center of the myocardial
wall, τclosemid = 110% · τcloseendo and performed linear interpolation between
endocardium and M-cells, and between M-cells and epicardium to obtain a
spatially varying map of τclose values. For both scenarios (linear gradient
throughout the wall and the M-cell model), we defined the parameter rT
as the ratio between the APD parameters at epicardium and endocardium:
rT = τcloseepi/τcloseendo . Figure 10a shows that the difference in the considered
ECG features between the linear gradient model and the used M-cell model
was marginal. This result was not surprising as τclose controls cardiac repo-
larization, whereas the QRS duration and electrical axis depend mostly on
cardiac depolarization. Furthermore, we also analyzed how regional differ-
ences in APD can influence the ECG parameters. To that end, we created a
base-to-apex gradient by defining an additional ratio rBA = τclosebase/τcloseapex .
In Fig. 10b, the resulting variation in ∆QRS and α is illustrated. In this case,
QRS duration was, as expected, only minimally affected (range 0.15 ms) but
the electrical axis varied by 13.6◦.

Figure 11: Influence of fiber elevation angle αf within physiological range on ECG fea-
tures (the anatomical models are generated with αf on the endocardium and −αf on the
epicardium.)

Finally, we investigated the effect of the fiber model on the ECG features.
According to the study by Lombaert et al. (2012), fiber angles in human phys-
iology range on average from about 50◦ to 80◦ on the epicardium. As shown
in Fig. 11, the variation of ∆QRS in that range was small, with a range of
8.2 ms. The electrical axis varied by 30.8◦ as the electrical activation pattern
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was modified due to the anisotropic diffusivity. However, that variation was
still within the clinical range.

Altogether, these finding – linear dependence of ∆QRS on myocardial
diffusion, and linear dependence of α on LV/RV endocardial diffusion – con-
firmed the assumptions made in Sec. 2.2.3 and justified the selection of the
two features for the estimation of cardiac electrical diffusivity. However, as
expected, the experiments also showed that multiple combinations of cMyo,
cLV and cRV can yield the same set of ECG features. The resulting uncer-
tainty of diffusion parameters given a set of ECG features will be quantified
in Sec. 3.2.2. Because variation for different APD distributions and fiber el-
evation angles was found to be relatively low or cannot be directly measured
in-vivo at the time of this study, we focused on the estimation of diffusion
coefficients, keeping the other parameters at their nominal value.

3.1.3. Analysis of Computational Efficiency

Using one representative patient case, computational efficiency was ana-
lyzed on a system with a 16-core Intel Xeon 64-bit CPU at 2.4 GHz and an
NVIDIA GeForce GTX 580 graphics card. As described by Zettinig et al.
(2013b), the computational times of image preparation and anatomical model
creation, which has to be computed only once per patient, amounted to a
total of 81.2 seconds. Table 4 reports the runtimes of the LBM-EP algo-
rithm for a full heart cycle on differently spaced Cartesian grids (Georgescu
et al., 2013). The projection of the extracellular potentials to the torso and
the calculations of the ECG traces are simple matrix operations. Hence, the
evaluation of the complete forward model could be done in less than 3 sec-
onds for a grid with an isotropic resolution of 1.5 mm. As the evaluation of
a polynomial function is almost immediate, the estimation of cardiac diffu-
sivity required less than 10 seconds because of the three forward runs for the
purpose of normalization.

Table 4: Full heart cycle runtimes of the LBM-EP algorithm for different grid spac-
ings (Georgescu et al., 2013)

Grid Spacing GPU Runtime
1.5 mm 2.8 sec.
0.7 mm 21.7 sec.
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3.2. Evaluation of the Proposed Data-Driven Estimation Framework

3.2.1. Experimental Protocol

In this study, datasets of 19 patients with dilated cardiomyopathy (DCM)
and a QRS duration of at least 120 ms were used. For all of them, an anatom-
ical model was created based on cine magnetic resonance images (MRI) as
described in Sec. 2.1. Thereafter, 500 EP simulations were computed for
each patient on a 1.5 mm-isotropic Cartesian grid, accounting for a total of
9,500 forward model runs. Diffusivity coefficients were uniformly sampled
between 50 mm2/s and 5, 000 mm2/s under the constraints cMyo ≤ cLV and
cMyo ≤ cRV .

3.2.2. Uncertainty Analysis in Cardiac Diffusion Parameters

Before training the regression model, the intrinsic uncertainty of the ECG
inverse problem under our forward model was quantified using the entire syn-
thetic EP database (9,500 simulations). To minimize the effects of geometry,
the analysis was conducted with normalized ECG parameters. All computed
(∆QRS, α) tuples were grouped in 20 × 20 bins, and for each bin, the local
standard deviation of the diffusion coefficients cMyo, cLV and cRV was calcu-
lated. Table 5 reports the total standard deviation in the entire dataset, the
average local standard deviation, and the uncertainty defined as their ratio.
As illustrated in Fig. 12, which shows the uncertainty for each bin, the high-
est variation can be found in the healthy range of QRS duration and electrical
axis (up to 180%). The reported high uncertainties, especially for cLV and
cRV , reflects the ill-posed nature of the ECG inverse problem if only QRS
duration and electrical axis are employed to personalize the model. That in-
formation will be useful when evaluating the accuracy of the personalization
techniques in the next sections.

Table 5: Total, and average local (bin-wise) standard deviation, and the uncertainty de-
fined as their ratio for all three diffusion coefficients.

cMyo cLV cRV
Total SD (mm2/s) 1,482 1,095 1,191
Avg. local SD (mm2/s) 191 556 537
Uncertainty 12.9% 50.7% 45.1%
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Figure 12: Estimated diffusion standard deviation (SD) in % of total SD for known elec-
trical axis and QRS duration. The highest uncertainty is found in the healthy range of
parameters (center of plots).

3.2.3. Evaluation on Synthetic Data

The proposed machine-learning personalization procedure was evaluated
using a leave-one-patient-out cross-validation on the database, i.e. the re-
gression models were trained using a subset of 18 patients and tested with
the remaining one, for each of the 19 DCM cases respectively. Next, the
average testing errors in the diffusion (parameter) space were calculated. To
evaluate the accuracy of the regression model in the observable space of ECG
parameters, ∆QRS and α were computed according to the estimated diffusiv-
ity parameters and quantitatively compared with the known ground truth.
In order to analyze the required dimensionality of the polynomial regression
model, a cross-validation procedure with regression degrees ranging from 1
to 8 was performed. While linear or quadratic regression models failed to
capture the ECG problem, as shown in Fig. 13, the model started to overfit
at degrees higher than four, leading to again increasing prediction errors in
ECG space.

Thus, the best option is to use cubic regression. In Tab. 6, the final regres-
sion coefficients βi,j according to Eq. 13, trained using the entire synthetic
dataset, are given. The errors in estimated diffusion reported in Tab. 7 were
obtained using this model. The relative errors in % of the total standard
deviation of the dataset were in the same range as the estimated uncer-
tainty of the inverse problem (Sec. 3.2.2). The proposed regression model
was thus able to predict up to the intrinsic uncertainty of the problem. Fur-
thermore, prediction errors were significantly higher when no normalization
was applied, as illustrated in Tab. 7, suggesting the proposed model-based
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a) Diffusion cMyo, cLV , cRV b) QRS Duration ∆QRS c) Electrical Axis α

Figure 13: Analysis of polynomial regression degree on prediction accuracy. Average test-
ing errors of leave-one-patient-out cross-validation in a) diffusion space, b) QRS duration
∆QRS , and c) electrical axis α. The regression model overfits at degrees ≥ 4, as the
prediction errors in ECG feature space increase again.

normalization procedure was able to partially compensate for inter-patient
geometry variability.

In addition to the diffusion parameters used in the forward model (cMyo,
cLV and cRV ), we also tested how well the ratio between cLV /cRV can be
reconstructed. Low prediction errors as listed in Tab. 7 were expected in
light of the experiments carried out in the previous section, which showed
a linear dependency of the electrical axis on cLV when cLV + cRV is kept
constant. However, the ratio alone is not sufficient for a complete model
personalization as the two values are needed.

Table 6: Learned regression coefficients βi,j rounded to 5th decimal position (Eq. 13, ∆QRS

and α to be given in seconds and radians, respectively). Full double-precision coefficients
are available from supplementary material.

i j gMyo gLV gRV
3 0 -4397.72303 -2224.80345 -2372.28284
2 1 947.10794 -217.53110 -111.83210
2 0 20619.61231 8748.58856 10659.98012
1 2 -339.47629 884.12470 -1849.11181
1 1 -2138.03900 -556.40419 1168.22703
1 0 -31323.62564 -13516.54750 -15836.31353
0 3 -125.51341 -238.65933 513.65578
0 2 688.60647 -215.02537 1004.99532
0 1 1070.11229 585.32229 -900.63528
0 0 15662.21934 9621.33473 10454.35893
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Table 7: Diffusion space prediction errors on the synthetic dataset, absolute in mm2/s and
relative in % of the total standard deviation. In addition to the three parameters, also the
ratio between cLV and cRV was tested.

cMyo cLV cRV cLV /cRV
With Normalization 356 451 533

24.0% 41.2% 44.7% 21.3%
Without Normalization 571 540 597

38.5% 49.3% 50.0% 23.9%

Comparison Against Nominal Values. Table 8 reports the average absolute
errors in ECG feature space for forward model simulations with nominal dif-
fusion parameters from literature and parameters obtained with the proposed
regression framework. Likewise, the error distributions are shown in Fig. 14.
Calibrated simulations using our framework were not only in the range of
clinical variability but also significantly (t-test p-value < 0.001) more pre-
cise than those obtained with nominal diffusivity values. In addition, our
predictions were on average centered around the ground truth QRS dura-
tion (average bias: +0.7ms), the ∆QRS calculated with default parameters
was on average 28.9ms too short. As the default parameters correspond to
healthy physiology whereas conduction abnormalities cause prolonged QRS
durations, this result was expected. Using our diffusion estimation frame-
work may thus be preferable to using nominal parameters when only ECG
is available.

Table 8: Average absolute ECG feature space errors for ECG simulations with nomi-
nal, NEWUOA-estimated and predicted diffusivity parameters using a machine learning
technique.

Diffusivity ∆QRS [ms] α [deg]
Nominal Parameters 33.7 ±15.7 53.2 ±33.8
NEWUOA Optimization 7.4 ±11.3 16.1 ±31.4
MARS 4.6 ±5.1 9.8 ±23.0
Gradient Boosting 4.9 ±5.8 9.5 ±19.8
Polynomial Regression 4.8 ±6.0 8.9 ±19.7

Comparison against Alternative Machine Learning Techniques. In this study,
the predictive power of the proposed polynomial regression framework is com-
pared against two non-parametric non-linear methods: multivariate adaptive
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Nominal Parameters

NEWUOA Optimization

Polynomial Regression

Gradient Boosting

MARS

Figure 14: QRS duration and electrical axis error distributions for ECG simulations with
nominal, NEWUOA-estimated and predicted diffusivity parameters using a machine learn-
ing technique. On each box, the central mark is the median, the edges of the box are the
quartiles, and the whiskers extend to the most extreme data points not considered outliers.
The range between the whiskers covers approximately 99.3% of the data.

regression splines (MARS) and Gradient Boosting, as described in Hastie
et al. (2009). The former, MARS, is a non-parametric regression method
with explicative capabilities, which intuitively extends linear regression by
fitting splines to the predictors to capture data non-linearities and variable
interactions. For our evaluation, the ARESLab toolbox (Jekabsons, 2011)
was used. Gradient Boosting, on the other hand, is based on an ensemble
of weak prediction models, in our case 100 decision trees (LSBoost function
of MATLAB). Tab. 9 lists the diffusion space errors for all tested machine
learning algorithms. The errors in ECG feature space can be found in Tab. 8
and Fig. 14. Both approaches yielded very similar diffusion error distribu-
tions compared to the proposed polynomial regression framework. Also the
error distributions of ∆QRS and α obtained by MARS and Gradient Boosting
were similar to those obtained by polynomial regression.

Table 9: Diffusion space prediction errors on the synthetic dataset, relative in % of the
total standard deviation, for the tested machine learning algorithms.

cMyo cLV cRV
MARS 23.2% 40.2% 43.7%
Gradient Boosting 24.3% 46.1% 49.1%
Polynomial Regression 24.0% 41.2% 44.7%
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Comparison against an Alternative Inverse-Problem Method. We compared
the performance of the regression framework with a personalization approach
that is based on NEWUOA (Powell, 2006, 2008), a gradient-free inverse prob-
lem method. An algorithm similar to the approach proposed by Neumann
et al. (2014) is followed. The diffusion coefficients c0

Myo, c
0
LV , c0

RV are initial-
ized with parameters associated with healthy EP (Tab. 2, configuration F1).
The initial step size is set to 500 mm2/s. Cardiac diffusivity is then estimated
using NEWUOA such that both the QRS durations and the electrical axis
match:

(c∗Myo, c
∗
LV , c

∗
RV ) = arg mincMyo,cLV ,cRV

C
[
f∆QRS ,α (cMyo, cLV , cRV )

]
(16)

Hereby, f∆QRS ,α(·) denotes the ECG features obtained by running the EP
forward model. In the cost function C, the values ∆m

QRS and αm are the
measured QRS duration and electrical axis, respectively, and the parameter
λ = 0.1 accounts for the different orders of magnitude between QRS duration
(in seconds) and electrical axis (in radians):

C(∆i
QRS, α

i) = |∆m
QRS −∆i

QRS|+ λ |αm − αi| (17)

As shown in Tab. 8, the errors in ∆QRS and α calculated using the
NEWUOA-personalized forward model were higher compared to the data-
driven estimation framework. In addition, the obtained values for the elec-
trical axis were less centered around the ground truth (average bias: 8.1◦).
Note that the table lists higher standard deviations (11.3 ms and 31.4◦ for
∆QRS and α, respectively) than Fig. 14 suggests because of numerous outliers
in the NEWUOA predictions. In total, the optimization took about 3min to
converge, while our approach required only 10 s to calculate the three forward
simulations for the normalization. Our approach was therefore not only 20×
more computationally efficient but also yielded more predictive diffusivity pa-
rameters.

3.2.4. Evaluation on Real DCM Cases

Finally, we evaluated the machine-learning personalization with the clin-
ical ECG data which were available for all 19 DCM cases. The trained re-
gression models from the cross-validation were employed to estimate diffusion
coefficients based on measured QRS duration and electrical axis. In three
cases, the prediction was not successful and yielded negative diffusivity for at
least one of the diffusion parameters because the measured electrical axis was
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outside the normalization range. These cases are easily identifiable and could
therefore be processed using other approaches if needed. For the remaining
16 patients, plausible diffusion coefficients (between 141 and 582 mm2/s for
cMyo, and between 678 and 2769 mm2/s for cLV and cRV ) were estimated.
Table 10 reports the average absolute errors between clinical ground truth
and ECG features obtained with forward model computations using the es-
timated diffusion parameters for the remaining 16 patients. Figure 15 shows
the obtained error distributions, indicating that the simulated QRS dura-
tion was on average 18 ms too long, while the electrical axis was closely
centered (average bias: 3.1◦) around the measurements, both values being
within clinical acceptability as defined prior to the study. Finally, Fig. 16
illustrates the simulated ECG chest leads overlaid on the measured ones for
one representative patient.

Table 10: Average absolute ECG feature space errors for ECG computations with
regression-predicted diffusivity parameters from clinically measured ECG features.

Diffusivity ∆QRS [ms] α [deg]
Regression-based Prediction 18.7 ±16.2 6.5 ±7.6

Figure 15: QRS duration and electrical axis error distributions for ECG simulations dif-
fusivity parameters estimated from clinical ground truth measurements.

4. Discussion and Conclusions

4.1. Discussion

In this manuscript, we described a data-driven method for the person-
alization of a cardiac electrophysiology model from ECG features. As sup-
ported by reported results, the method achieves the same accuracy as tra-
ditional inverse problem algorithm with the advantage of 1) being computa-
tionally efficient (evaluation of a polynomial function is almost immediate)
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Figure 16: Clinically measured, and computed ECG chest leads after model estimation of
cardiac diffusivity for one representative patient, showing promising agreement during car-
diac depolarization, which we focused on in this study. For this case, obtained estimation
errors amounted to 1.6 ms for the QRS duration and 0.5◦ for the electrical axis.

and 2) providing an estimate of parameter uncertainty, an additional variable
that could be employed clinically.

While the anatomical model was obtained from cine MR images in this
work, the approach is easily applicable to other modalities such as computed
tomography (CT) or echocardiography (Zheng et al., 2008), provided the full
bi-ventricular myocardium is visible. Furthermore, while the experiments
were carried out using a synthetic model of fiber architecture, the tremen-
dous progresses achieved in in-vivo diffusion tensor imaging (DTI) will soon
enable to use patient-specific data and thus remove this additional uncer-
tainty (Toussaint et al., 2013), although our experiments have shown that
the influence of fiber direction is minimal within the physiological range. For
the mapping of potentials onto the body surface, an atlas of torso geometry
was employed as 3D images of patient upper body were not available. The
manual registration of the atlas against 2D contours outlined in the three
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sagittal, axial and longitudinal planes was performed by an expert. It should
be noted however that slight mis-registration would not have impacted the
performance of the algorithm as ECG leads are known to be tolerant with
respect to electrode placement (Sheppard et al., 2011).

This work was performed using a mono-domain EP model with the ac-
tion potential model proposed by Mitchell and Schaeffer (2003). It has been
shown by Boulakia et al. (2010) and Plank et al. (2013) that anisotropic
mono-domain models are able to preserve the essential ECG features, which
were used for the subsequent personalization, when compared to orthotropic
bi-domain models. It should be noted that the LBM-EP method can use any
mono-domain model like for instance the TenTusscher model. Furthermore,
the data-driven personalization algorithm is generic by design and can be
applied to any cell model, or any bi-domain or graph-based/Eikonal model
of cardiac electrophysiology, as far as the database can be computed in a re-
alistic amount of time. Moreover, our focus on cardiac depolarization allowed
decoupling the estimation of electrical diffusivity from repolarization EP pa-
rameters and assuming a static heart. Unlike during the ST-T period, the
deformation of the myocardium due to cardiac motion has been shown to be
marginal during the QRS complex (Jiang et al., 2009). Also, the influence of
the action potential duration on the ECG features used to estimate electrical
diffusion (QRS duration and electrical axis) was confirmed to be negligible.

In this study, the mapping of extracellular potentials from the heart to the
body surface relies on a boundary element approach. For our simulations, we
applied constant homogeneous isotropic conductivity in the torso, including
the chest cavity, thoracic cage, muscle tissue and skin. Minor sensitivity
on body surface potentials for different organ conductivities as observed in
the computational study by Geneser et al. (2008) justifies this assumption
for our purposes. We verified our BEM implementation with analytically
defined test cases and showed convergence with increasing mesh resolution
and order of Gaussian quadrature for the evaluation of integrals without
available closed-form formula (Fig. 8), suggesting that the uncertainty in
diffusivity parameters is not related to BEM numerical approximations but
rather intrinsic to the inverse ECG problem.

From the ECG traces obtained at the body surface, we derived two fea-
tures, namely the QRS duration ∆QRS and the electrical axis α. While the
proposed framework is generic and allows the integration of an arbitrary num-
ber of features, this work is based on the assumption that these two features
are sufficient to explain various EP patterns. In addition, the selected fea-
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tures are commonly available from clinical ECG traces and clinical reports,
and would therefore allow the estimation of diffusion coefficients with little
effort in clinical routine. The proposed method could therefore constitute
a first model personalization step when no dense EP data is available, and
would also provide more accurate results compared to generic parameters, as
suggested by our experiments.

The use of QRS duration and electrical axis was further supported by
our parameter analysis. It has been shown in this paper that QRS dura-
tion varies linearly with myocardial diffusion (cMyo), while the electrical axis
varies linearly with increasing left endocardial diffusion (cLV ) when the right
endocardial diffusion (cRV ) is decreased at the same time such that their sum
is constant. However, these relationships are not decoupled as each diffusion
parameter has influence on both features, which contributes to the quanti-
fied uncertainty of the inverse problem: different diffusivity configurations
can lead to the same ECG parameters. In particular, we showed that left
and right endocardial diffusivity are subject to broad variations, especially
in the region of healthy EP (Fig. 12). Clearly demonstrating the ill-posed
nature of the inverse ECG problem under the assumptions of our EP model,
the reported uncertainties constitute, to the best of our knowledge, the first
estimates of the optimal bound in accuracy for any inverse problem to esti-
mate myocardium diffusion that rely on ∆QRS and α only. We expect the
uncertainty to decrease as more clinical features are considered. This study
is thus subject to future work.

The main contribution of this work is our novel data-driven framework
to estimate cardiac diffusion parameters. Instead of solving the inverse ECG
problem numerically, we proposed to employ statistical learning, and in par-
ticular multivariate polynomial regression, to learn the relationship between
ECG features and diffusivity. Compared to other statistical approaches, poly-
nomial regression has the advantage that the regression coefficients can be
given and the estimation of diffusion parameters is possible using a closed-
form formula. The personalization formula can therefore be shared between
research groups. Error distributions obtained using multivariate adaptive re-
gression splines (MARS) and Gradient Boosting were, as reported in Tab. 8,
similar to those obtained by polynomial regression. An evaluation of the
required polynomial degree revealed that the model starts over-fitting at de-
gree 4 (Fig. 13). We therefore use cubic multivariate regression and report
the final coefficients in Tab. 6.

A key aspect of the approach is the model-based normalization of EP fea-
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tures to indirectly incorporate geometric information in the statistical model.
The strategy consists in scouting the space of ∆QRS and α for a given patient
by running three forward simulations with diffusion parameters relating to
healthy EP, and left and right bundle branch block scenarios. As a result,
although not directly based on anatomical or physiological features such as
heart size or strength of myocardial contraction, we were able to show that
the normalization scheme compensates for patient geometry and significantly
improves prediction results (Tab. 7). For an unseen patient, three forward
model runs are needed (computed in about 10 seconds using LBM-EP), which
is still acceptable in a clinical setting but also far less than in conventional
inverse-problem algorithms, which require often hundreds of model evalua-
tion to converge.

Prediction errors in diffusion space on a database of 9,500 simulations
(leave-one-patient-out) were in the range of the estimated intrinsic uncer-
tainty of the problem, especially for left and right endocardial diffusivity
(Tab. 7). Only for myocardial diffusivity, the prediction was slightly worse
(24% of total std. dev.) compared to the uncertainty (13% of total std.
dev.) One reason for this result could be the strong dependence of myocar-
dial diffusivity on both ECG features for diffusions of less than 400 mm2/s
(Fig 9a).

Yet, prediction errors in the ECG feature space for the synthetic dataset
obtained by running forward simulations using the calibrated EP model were
significantly better than those obtained by using nominal diffusion param-
eters from literature (Tab. 8). Furthermore, a comparison with an estima-
tion algorithm based on the gradient-free inverse problem method NEWUOA
showed that our method performs better (prediction errors in QRS duration
and electrical axis were 54% and 80% higher, respectively) while being im-
mediate to compute and providing uncertainty estimates. Altogether, the
application of the proposed data-driven framework may thus be preferential
to traditional approaches when only ECG data are available.

Finally, an evaluation with clinically measured ECG features was con-
ducted on all 19 patient cases. The model was successfully fitted in 16 cases
out of 19 (84%), with promising prediction errors of 18.7± 16.2 ms for ∆QRS

and 6.5 ± 7.6◦ for α, within in clinical acceptability. The model could not
be personalized in three cases as the measured electrical axis was outside the
normalization range. A more realistic incorporation of geometrical features
might improve the success rate and avoid such inconsistencies.

The results previously published by Zettinig et al. (2013a) showed smaller
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overall errors in ∆QRS and α, potentially because 1) fewer patients with a
smaller range of anatomical and physiological variation were used, and 2) the
original framework (multivariate polynomial regression of degree 7) might
have been overfitting as shown in Fig. 13. In addition, estimation errors
without normalization were better than previously reported, possibly due to
the updated torso registration technique.

4.2. Perspectives

In this work, only the cardiac anatomy model was generated based on pa-
tient data. Despite the contour-based registration, torso geometry was based
on an atlas and does not entirely reflect patient-specific anatomy. Also the
boundary element mapping of potentials assumes constant conductivity, ne-
glecting thoracic organs and different tissue types. Future work could thus
improve the anatomical model by incorporating more imaging data from the
heart to the body surface and model the different tissues in the torso in-
dependently (lung, bones, muscles). Furthermore, instead of the proposed
normalization technique, explicitly integrating geometrical features directly
into the regression framework could potentially better cope with anatomical
variability. In addition, the framework could be extended by using an elec-
tromechanical model of the heart (Zettinig et al., 2013b) to cope with the
influence of cardiac motion on the ECG. A comprehensive study is needed
though to quantify that aspect and properly consider it into the estimation
process. There are indeed no studies available to clarify how much mo-
tion happens during the fast depolarization of the heart, to the best of our
knowledge. Even though, a dynamic model would have great benefit when
estimated cardiac repolarization features like action potential duration.

As the uncertainty in diffusion parameters given QRS duration and elec-
trical axis is high, the integration of more ECG features could improve es-
timation precision and increase the success rate of the approach. Similarly,
more ECG features may potentially allow the estimation of more local diffu-
sion coefficients, rendering the estimation of regional diffusivity distributions
possible.

Finally, refining the forward model, in particular regarding cardiac elec-
trophysiology, might lead to future extensions of our framework. More com-
plex biophysical bi-domain models, integration of atrial geometry, more re-
fined activation patterns, and coupling with mechanical models could po-
tentially increase the predictive power of the framework and are subject to
future work.

34



4.3. Conclusion

We have shown in this paper that the estimation of patient-specific car-
diac diffusion parameters from standard 12-lead ECG measurements using
machine learning techniques is possible, up to the intrinsic uncertainty of
the problem. Based on QRS duration and electrical axis as ECG features,
a data-driven regression model was trained and used to predict diffusivity
parameters for left and right endocardium (mimicking the fast conducting
Purkinje system), and the bulk myocardium tissue. Under the assumptions
of our forward model, the prediction errors were in the range of the under-
lying uncertainty in diffusivity, which we empirically quantified for the first
time to the best of our knowledge. We evaluated the framework both on the
synthetic dataset and on clinical measurements using a leave-one-patient-
out cross-validation and computed the error in ECG feature space using
forward simulations with estimated diffusion parameters. Significant im-
provement with respect to nominal diffusivity values, which relate to healthy
electrophysiology, were obtained. We also conducted a comparison with a
NEWUOA-based personalization approach, finding overall superior predic-
tive power. Therefore, our framework can provide good preliminary person-
alization, prior to more refined estimation if invasive or BSM measurements
are available.
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