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ABSTRACT

Despite the common invisibility of cancerous lesions in trans-
rectal ultrasound (TRUS), TRUS-guided random biopsy is
considered the gold standard to diagnose prostate cancer.
Pre-interventional magnetic resonance imaging (MRI) has
been shown to improve the detection of malignancies but fast
and accurate MRI/TRUS registration for multi-modal biopsy
guidance remains challenging. In this work, we derive a
statistical deformation model (SDM) from 50 automatically
segmented patient datasets and propose a novel registration
scheme based on a lesion-specific, anisotropic preconditioned
similarity metric. The approach is validated on a dataset of
10 patients, showing landmark registration errors of 1.41 mm
in the vicinity of suspicious areas.

Index Terms— Prostate, Registration, Statistical Defor-
mation Model, Preconditioning

1. INTRODUCTION

The current gold standard for prostate cancer diagnosis relies
on 12-core random biopsies under TRUS guidance [1]. The
invisibility of many lesions in ultrasound contributes greatly
to the low sensitivity of the method. Thus, multi-modal ap-
proaches including magnetic resonance imaging (MRI) and,
more recently, positron emission tomography (PET) with spe-
cific tracers targeting the prostate specific membrane anti-
gen (PSMA) are utilized to identify suspicious lesions in pre-
interventional images, and to aid their targeting during the bi-
opsy [2]. Recent studies, suggesting that accurate MRI/TRUS
registration outperforms cognitive fusion by the physicians to
target cancerous lesions, drive the ongoing development of
image fusion-guided biopsy systems [3].
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This registration has been the topic of many prior studies.
Fiducial-based approaches as in [4] as well as surface-based
methods such as [5, 6] require manual annotations or segmen-
tations in at least one of two images, and yield affine or spline-
interpolated elastic image alignment. Such algorithms inhe-
rently neglect inhomogeneous deformations within the pro-
state gland.

One option to overcome this limitation is to perform a
deformable intensity-based registration between both images,
see the review by Sotiras et al. [7] and references therein. Fo-
cusing on geometric constraints of the transformation model,
proposed methods are either based on control points and an
interpolation scheme [8] or on a dense, voxel-wise formula-
tion of the deformation field [9]. In either case, non-linear
deformation models regularly include a high number of para-
meters, with known challenges in overcoming local minima,
on physically reasonable regularization.

The availability of sufficiently large annotated datasets of
various anatomies has often been exploited to generate statis-
tical models of shape, texture and deformation as priors for
deformable registration, effectively reducing the dimensiona-
lity of the optimization problem while at the same time enfor-
cing physically meaningful deformations [7].

A learning technique is used for dimensionality reduction,
for instance in the case of principal component analysis
(PCA) allowing to optimize an unseen dataset’s representa-
tion in PCA space. While the work of Onofrey et al. [10]
allows for a MRI/TRUS registration using a population-based
statistical deformation model, the algorithm is point-based
and does not consider image intensities.

A popular choice to generate patient-specific statistical
models of prostate motion is biomechanical simulation [11,
12] based on prior segmentations in MRI. Such approaches
regularly require a large quantity of finite element simulations
for a wide range of TRUS probe positions. Even if population
data is used for the simulations, MRI segmentations are requi-
red for personalization of unseen datasets [13]. However, due
to time constraints and the large inter-observer variation [3],
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Fig. 1. a) Determination of prostate shape and deformation vec-
tors corresponding across patients using ray casting technique. b)
Mean prostate shape before (red vertices) and after (mesh) SDM
mean deformation (red lines), showing the compression induced by
ultrasound transducer (yellow sphere).

methods without the need for manual or semi-automatic con-
touring would be desired.

In this work, we propose a novel, fully automatic MRI/
TRUS registration scheme by combining a statistical defor-
mation model (SDM) generated from a population of clini-
cally observed prostate deformations with an intensity-based
image registration algorithm that does not require a segmen-
tation of unseen datasets. This is different from the work by
Tahmasebi et al. [14], where an SDM is employed to estimate
eigenmodes using a set of known landmark-based deformati-
ons, which are then used to extrapolate a likely whole-gland
deformation without considering image intensities. Instead
of merely incorporating the SDM as regularizer to penalize
unlikely, i.e. physically unrealistic deformations as in [15],
we directly optimize for eigenmode coefficients, greatly re-
ducing the dimensionality of the registration problem. To im-
prove the performance of the image fusion at critical lesions,
as key element of our method, we propose to anisotropically
precondition the image similarity metric, emphasizing the im-
portance of accurate alignment not only at likely cancer loca-
tions visible in PSMA-PET images but also predominantly
along the main directions of expected deformation.

2. METHOD

Statistical Deformation Model. The generation of the SDM
is based on a dataset of N corresponding pre-interventional
MR images IMR and interventional TRUS images IUS acqui-
red respectively in the supine and lithotomy positions.

Similar to the approach in [5], triangular surface meshes
of the prostate are created from available binary segmen-
tations in both images (ΓMR, ΓUS), and demeaned so that
their center of gravity is at the origin. As shown in Fig. 1a,
their vertices are elastically registered with the Coherent
Point Drift (CPD) algorithm [16] to obtain a warped MR
mesh Γ ′MR. Due to the arbitrary vertex numbering in the N
meshes, point correspondence across patients is established
by intersecting M angularly equidistant rays starting at the
origin with meshes ΓMR for all patients. Thus, new vertex
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Fig. 2. Deformation caused by the first SDM eigenmodes (red li-
nes). Red vertices show the mean prostate after average deforma-
tion. Red arrows indicate the main direction of deformation (rotation
around the left-right axis, compression in the direction of transducer
insertion, and rotation around the cranio-caudal axis, respectively).

positions in MR space pi,j ∈ ΓMRi
and – using barycentric

interpolation – in US (i.e. warped MR) space p′i,j ∈ Γ ′MRi

are obtained for patients i = 1, .., N and rays j = 1, ..,M .
The point set P̂ of the mean prostate shape in MR, and the
mean deformations D̂ are then defined as

P̂ = {p̂j =
1

N

N∑
i=1

pi,j}, D̂ = {δ̂j =
1

N

N∑
i=1

δi,j}, (1)

with δi,j = p′i,j − pi,j (see Fig. 1a). As in [17], the SDM is
created using PCA. In brief, the deformations are demeaned
(δ′i,j = δi,j − δ̂j) and vectorized into matrix ∆ ∈ RN×3M .
An Eigen analysis of cov(∆) yields the sorted and devectori-
zed eigenvectors φk and corresponding eigenvalues λk.
Deformable Registration Framework. In general, image
registration aims at finding an optimal transformation T ∗

between reference and moving images, in our case TRUS
and MRI, using a similarity metric S and an iterative solver:
T ∗ = arg maxT S [IUS , T (IMR)]. Hereby, the similarity
metric S(IUS , I

′
MR) measures how well fixed image IUS

and transformed moving image I′MR = T (IMR) correspond,
commonly by integrating a metric f over the entire overlap-
ping image domain Ω: S(IUS , I

′
MR) =

∫
Ω
f(x) dx. In this

work, the multi-modal LC2 similarity metric is employed due
to its excellent behavior for MRI/ultrasound registration. In
short, LC2 correlates ultrasound intensities IUS(x) with a
linear combination of MRI intensities and gradients, see [18]
for further details.
Similarity Metric Preconditioning. The aim of the propo-
sed preconditioning is to emphasize the optimization of image
alignment at crucial locations t for a given application. For
prostate biopsy guidance, such locations could be suspicious
lesions present in MRI and/or PET. In this work, locations
t are automatically identified by the position of maximum
PSMA expression in PET images, which are already regis-
tered to the corresponding MR images by acquisition (combi-



Table 1. Average registration errors (TRE) in mm for a) rigid registration purely based on boundary landmarks (LM), and b) surface-based
registration as in [5]. c) Effect of iso-/anisotropic preconditioning onto TRE for LM placed close to t (lesion).

Experiment TRE for 1 2 3 4 5 6 7 8 9 10 µ± σ

a) Rigid All LMs 3.63 6.17 1.63 3.18 4.74 2.59 2.41 1.99 3.56 2.14 3.20±1.33
Lesion 7.13 16.2 1.99 3.91 4.42 1.47 3.16 1.16 4.91 3.44 4.78±4.16

b) Surface-based [5] All LMs 3.09 2.34 1.35 8.40 3.01 4.65 4.50 6.26 5.46 4.91 4.40±1.95
Lesion 0.32 2.03 2.48 7.96 1.60 1.65 4.33 2.64 2.36 5.99 3.14±2.19

c) Without Preconditioning All LMs 2.85 2.65 4.26 2.31 4.75 3.40 2.83 1.97 2.60 3.35 3.10±0.82
Lesion 2.16 3.25 1.20 1.48 1.84 2.37 1.61 0.79 2.13 1.73 1.86±0.64

Isotropic Preconditioning (ζiso) All LMs 1.88 3.64 2.87 2.39 4.71 3.07 3.03 2.08 6.26 3.48 3.34±1.25
Lesion 2.28 2.37 1.27 1.31 1.54 2.15 1.20 1.14 1.74 1.87 1.69±0.44

Anisotropic Preconditioning (ζaniso) All LMs 2.71 3.90 2.96 2.36 5.03 3.91 2.85 2.68 5.42 2.79 3.46±1.01
Lesions 0.84 2.47 1.31 1.24 1.08 2.39 1.18 0.478 2.06 1.09 1.41±0.63

ned scanner). We propose to modify the metric of the other-
wise Euclidean space for integration as follows:

S(IUS , I
′
MR) =

∫
Ω

f(x) ζ(x) dx︸ ︷︷ ︸
metric change

. (2)

The function ζ(x) ∈ [0, 1] modifies the ”density” of the image
space, effectively emphasizing the registration on areas where
ζ is close to 1, and removing influence of areas where ζ is
close to 0. A simple, isotropic (i.e. direction-independent)
preconditioning around t can now be achieved using the lo-
gistic function and the Euclidean norm:

ζiso(x) = 1−
(

1 + e−k·(‖x−t‖−d0)
)−1

, (3)

where parameters k and d0 control logistic slope and the
curve’s inflection point, respectively. Zikic et al. [19] used
location-independent gradient normalization to improve mu-
tual information-based registration. The idea of our approach
is to not only focus the registration on the region around t
but also predominantly along the expected directions of de-
formation at t. To this end, we estimate the deformations dk
at this point using the first three SDM eigenmodes

√
λk · φk,

for k = 1, 2, 3, and thin-plate splines (TPS) for interpolation
between control points. Note that because the TPS interpola-
tion does not guarantee a linear mapping, the deformations’
covariance matrix Σ = cov([d1 d2 d3]) is not necessarily
diagonal. Denoting ‖x− t‖Σ =

√
(x− t)ᵀΣ−1(x− t) the

Mahalanobis distance with respect to location t, we propose
the anisotropic preconditioning function (example in Fig. 3f):

ζaniso(x) = 1−
(

1 + e−k·(‖x−t‖Σ−d0)
)−1

. (4)

Automatic Deformable Registration Workflow. First, both
MRI and ultrasound images are rigidly aligned. A reasonably
good rotatory initialization is achieved using the acquisition
setup (see Sec. 3). In terms of translation, both images are
first aligned to the center of the image, followed by a rigid
registration using LC2. For the essential part of the proposed

registration scheme, we formulate a deformation field using a
linear combination of the SDM eigenmodes. For each control
point p̂j , i.e. vertex of the mean prostate shape, the corre-
sponding deformation is defined as follows: dj = (1 + θ0) ·
δ̂j+

∑L
k=1 θk ·

√
λk ·φk, whereL is the number of used eigen-

modes, and θ = (θ0, ..., θL) the vector of optimization para-
meters. For registration, we now directly optimize for an op-
timal parametrization θ∗ = arg maxθ S [IUS , Td(IMR,θ)].
Hereby, Td(x,θ) = x+D(x,θ) denotes the elastic transfor-
mation with the dense deformation fieldD created using thin-
plate splines (TPS) as in [5] for efficient GPU image warping.
Note that θ0 allows to scale the mean deformation, allowing
to cope with various probe pressures during US acquisition.

3. RESULTS AND DISCUSSION

Dataset and Experimental Setup. In total, N = 50 patient
datasets1 of prostate MRI and TRUS were acquired as in [5],
including automatic TRUS segmentation using a Hough fo-
rest and manual MR segmentation by an expert, both of which
are used for SDM generation. In addition, for a subset of
10 datasets, a corresponding PSMA-PET image for automa-
tic identification of locations t for preconditioning, manual
TRUS segmentations and six corresponding landmark points
in both modalities (four at the prostate boundary, two at struc-
tures within the organ, all manually annotated by an expert)
were available. For each patient, we asked for one landmark
point to be placed in the vicinity of t, ideally not farther away
than 5 mm. To test the accuracy of the Hough forest, the
Dice score between automatic and additionally obtained ma-
nual US segmentation in the mid-gland region was found to
be 86.2±3.5 for these 10 patients, which is similar to the ones
reported in [5, 11] and indicates potentials for improvement.
Statistical Deformation Model. Fig. 1b shows the mean de-
formation and Fig. 2 the first three eigenmodes of the SDM
generated using M = 81 rays and the 50 automatic TRUS

1Informed consent was obtained from all individual participants included
in the study, which was performed in accordance with the ethical standards
of the institutional and national research committees.
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Fig. 3. a-d) Registration result for four example datasets shown
as axial slice overlays of the TRUS image (red) onto warped MR
(greyscale). For Pat. 2, the registration got stuck in a local mini-
mum (blue arrows). e) MRI with PET overlay for one patient in the
apical region, with selection lesion t. f) Preconditioning weight map
ζaniso, with estimated main directions of deformation (ellipse), allo-
wing to improve registration without preconditioning (g) compared
to the proposed anisotropic preconditioning (h, blue arrows).

segmentations only. While all three induce a volume change,
compression is most prominent in the second mode (95% va-
riation between ±2

√
λ). Already the first 9 eigenmodes were

found to explain 92% of the variation in the dataset, sugges-
ting that despite the variation in prostate size, the expected de-
formations during a biopsy session compared to the patient’s
pose in the MRI scanner are quite homogeneous. We the-
refore assume that an SDM can capture the patient-specific
deformations reasonably well.
Deformable Registration. We validate our approach on the
10 fully annotated datasets, excluding the dataset under in-
vestigation from SDM generation, using target registration

Fig. 4. Target registration errors (TRE) in mm for the landmarks
placed close to t (lesion), showing that the proposed method out-
performs rigid and surface-based registration, and that anisotropic
preconditioning can improve alignments around critical structures.

error (TRE) of the landmark points. We optimized for the
first L = 9 eigenmodes, together with θ0 leading to a total
of 10 parameters. Empirically identified parameters d0 = 40
and k = 0.001 were used for preconditioning. All results
are reported in Tab. 1. The rigid registration (Tab. 1a) was
computed purely based on the four boundary landmarks using
the Umeyama method, clearly showing that rigid registra-
tions are inappropriate for this application (errors of up to
16.2 mm). Surface-based registration as in [5] (Tab. 1b) was
better than rigid fusion for many cases but showed severe mi-
salignments, mostly due to inaccurate automatic segmenta-
tion, in the few cases where it failed. Representative exam-
ples of the proposed method (results in Tab. 1c) are depicted
in Fig. 3a-d, with e-h showing the effect of the preconditi-
oning. TREs of the lesion-specific landmarks suggest that,
as expected, anisotropic preconditioning performs better than
the other two options, decreasing the average error from 1.86
and 1.69 mm to 1.41 mm. Results indicate that improvements
towards the critical lesion can affect the registration accuracy
at other locations, which might be an acceptable trade-off for
targeted prostate biopsies. Errors obtained using the propo-
sed method were in the range of the experiments conducted
in [11, 20]. After our registration pipeline, the average Haus-
dorff distance between ground truth MRI and TRUS meshes
was 1.84±0.59 mm. The obtained results do not only show
that an SDM can be used to elastically register unseen patient
MR and TRUS images but also that inaccuracies in the seg-
mentation process, as required for SDM generation using a
large dataset, can be overcome by the optimizer. However,
the high inter-subject variability might be reduced by SDM
generation with an even more extensive training set.

Lesion-specific landmark TREs are also reported in Fig. 4
for all evaluated methods. Paired Kolmogorov-Smirnov tests
indicate that all SDM-based methods performed significantly
better than rigid registration (p < 0.05), and that the propo-
sed SDM registration with anisotropic preconditioning per-
forms significantly better than surface-based registration. Due
to various graphics processor optimizations, the runtime for
the entire registration pipeline was on average 17.5 seconds,
roughly 6× faster than [20] and thus well suited for the tight
time requirements of clinical routine.

4. CONCLUSION

In this work, we have presented a statistical deformation mo-
del between prostate MRI and TRUS based on automatic US
segmentations, and successfully incorporated it into a novel
fully automatic, segmentation-free, intensity-based registra-
tion framework. Together with the proposed anisotropic si-
milarity preconditioning, we reached promising registration
errors, especially around crucial regions of interest for lesion
biopsy targeting. Potential future extensions include the ge-
neration of more detailed models, strategies to avoid local mi-
nima issues and a more extensive (pre-)clinical validation.
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